• 제목/요약/키워드: nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$)

검색결과 37건 처리시간 0.029초

청피의 항염증효과 (Effects of Citri Reticulatae Viride Pericarpium on 4-Hydroxynonenal-Induced Inflammation in PC12 Cells)

  • 예영준;김연섭;강미숙
    • 한방비만학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Objectives: The purpose of this study was to observe the effects of Citri Reticulatae Viride Pericarpium (CP) on 4-Hydroxynonenal (4-HNE)-induced inflammation in PC12 cells. Methods: 4-HNE was treated in PC12 cell to cause inflammatory response, and then treated with CP water extract at 25, 50, and $100{\mu}g/ml$. The phosphorylation of Jun N-terminal kinase (JNK) and the expression of $NF-{\kappa}B$ in PC12 cells were determined by Western blot, respectively. Results: The phosphorylation of JNK was significantly decreased in 4-HNE-stimulated PC12 cell by the treatment of CP extract at $25{\mu}g/ml$. The 4-HNE-induced expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) p65 in nuclear of the cells was significantly decreased in PC12 cell by treatment with CP extract at 25, 50, and $100{\mu}g/ml$. Conclusions: These results suggest that CP water extract has an anti-inflammatory activity through suppressing the JNK and $NF-{\kappa}B$ activation.

홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과 (Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro)

  • 강보빈;김채영;황지수;최현선
    • 한국식품과학회지
    • /
    • 제51권1호
    • /
    • pp.70-80
    • /
    • 2019
  • 본 연구에서는 홍삼 비사포닌 분획(NSF)의 항 염증 효과를 마우스 대식세포와 인간유래 단핵세포에서 확인하였다. NSF는 마우스 대식세포에서 LPS로 유도된 NO, iNOS 그리고 COX-2의 양 뿐만 아니라 IL-6, $TNF-{\alpha}$, MCP-1과 같은 염증성 싸이토카인의 생성량을 유의적으로 감소시켰다. 인간 유래 단핵세포에서는 PMA에 의해 유도되는 대식세포로의 분화를 효과적으로 억제하면서 분화인자인 $CD11{\beta}$와 CD36의 발현을 유의적으로 감소시켰다. 마우스 대식세포에서와 마찬가지로 염증성 싸이토카인들의 생성량 또한 감소하였는데, 이러한 NSF의 항 염증 효과는 두 전사인자의 조절작용에 의한 것으로 사료된다. 즉 NSF는 $NF-{\kappa}B$의 핵으로 이동을 감소시킴으로써 전사활성을 억제하여 염증성 싸이토카인들의 발현을 저해하고 이와 반대로 Nrf2의 발현과 핵으로의 이동을 증가시켜 항산화 효소이면서 항 염증 작용을 나타내는 HO-1의 발현을 촉진하는 것으로 관찰되었다. 따라서 NSF는 $NF-{\kappa}B$와 Nrf2의 두 가지 신호전달체계를 조절함으로써 항 염증 작용을 나타냈으며 이를 홍삼 NSF의 항 염증 기작으로 보고하는 바이다.

인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할 (Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells)

  • 이선영;양지원;정진섭
    • 생명과학회지
    • /
    • 제23권4호
    • /
    • pp.471-478
    • /
    • 2013
  • 인체 중간엽 줄기세포는 다양한 세포로의 분화 및 자가증식 할 수 있는 능력뿐만 아니라 질병치료에 대한 치료적 잠재력을 가지고 있다. 줄기세포 분화의 분자 기작에 대한 이해는 줄기세포 이식의 치료 효능을 향상시킨다. 본 연구에는 인체 중간엽 줄기세포의 골분화에서 NFAT5의 역할을 밝혔다. 특이적 siRNA의 transfection으로 인한 NFAT5의 억제는 인체 중간엽 줄기세포의 골분화를 현저히 감소시켰으며, NF-${\kappa}B$ promoter 활성화 또한 세포의 증식이나 지방 세포로의 분화에 영향 없이 감소 시켰다. NFAT5의 발현 억제는 기본적으로 유도되는 NF-${\kappa}B$의 활성화와 TNF-${\alpha}$에 의해서 유도되는 NF-${\kappa}B$의 활성화를 감소시켰으나, TNF-${\alpha}$에 의해서 유도되는 NF-${\kappa}B$의 분해에는 아무런 영향을 주지 않았다. 이번 연구를 통해 NFAT5가 NF-${\kappa}B$ 경로를 조절함으로써 인체 중간엽 줄기 세포의 골분화에 아주 중요한 역할을 하는 것을 확인 할 수 있었다.

Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-κB Activity in Triple-Negative Breast Cancer Cells

  • Ma, Chaobing;Zu, Xueyin;Liu, Kangdong;Bode, Ann M.;Dong, Zigang;Liu, Zhenzhen;Kim, Dong Joon
    • Molecules and Cells
    • /
    • 제42권9호
    • /
    • pp.628-636
    • /
    • 2019
  • Altered genetic features in cancer cells lead to a high rate of aerobic glycolysis and metabolic reprogramming that is essential for increased cancer cell viability and rapid proliferation. Pyruvate kinase muscle (PKM) is a rate-limiting enzyme in the final step of glycolysis. Herein, we report that PKM is a potential therapeutic target in triple-negative breast cancer (TNBC) cells. We found that PKM1 or PKM2 is highly expressed in TNBC tissues or cells. Knockdown of PKM significantly suppressed cell proliferation and migration, and strongly reduced S phase and induced G2 phase cell cycle arrest by reducing phosphorylation of the CDC2 protein in TNBC cells. Additionally, knockdown of PKM significantly suppressed $NF-{\kappa}B$ (nuclear factor kappa-light-chain-enhancer of activated B cells) activity by reducing the phosphorylation of p65 at serine 536, and also decreased the expression of $NF-{\kappa}B$ target genes. Taken together, PKM is a potential target that may have therapeutic implications for TNBC cells.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Effects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study

  • Kim, In-Sub;Jo, Won-Min
    • Journal of Chest Surgery
    • /
    • 제50권3호
    • /
    • pp.144-152
    • /
    • 2017
  • Background: The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and androgen receptor (AR) have been reported to be mediators of CMP and heart failure. This study drew upon pathophysiologic studies and the analysis of $NF-{\kappa}B$ and AR to assess the cardioprotective effects of MG132 in a left ventricular hypertrophy (LVH) rat model. Methods: We constructed a transverse aortic constriction (TAC)-induced LVH rat model with 3 groups: sham (TAC-sham, n=10), control (TAC-cont, n=10), and MG132 administration (TAC-MG132, n=10). MG-132 (0.1 mg/kg) was injected for 4 weeks in the TAC-MG132 group. Pathophysiologic evaluations were performed and the expression of AR and $NF-{\kappa}B$ was measured in the left ventricle. Results: Fibrosis was prevalent in the pathologic examination of the TAC-cont model, and it was reduced in the TAC-MG132 group, although not significantly. Less expression of AR, but not $NF-{\kappa}B$, was found in the TAC-MG132 group than in the TAC-cont group (p<0.05). Conclusion: MG-132 was found to suppress AR in the TAC-CMP model by blocking the UPS, which reduced fibrosis. However, $NF-{\kappa}B$ expression levels were not related to UPS function.

Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

  • Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제18권1호
    • /
    • pp.19-26
    • /
    • 2015
  • Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC) have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax) ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-${\kappa}B$ expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

은행잎의 주성분인 bilobalide가 염증반응에 미치는 효과 (The Effects of bilobalide Extracted from Ginkgonis Folium on Inflammation)

  • 정제룡;길기정
    • 대한본초학회지
    • /
    • 제30권1호
    • /
    • pp.85-93
    • /
    • 2015
  • Objectives : Bilobalide (BIL) is a predominant sesquiterpene trilactone constituent that accounts for a partial portion of the standardized Ginkgonis Folium extract, which has been widely used to treat a variety of neurological disorders involving cerebral ischemia and neurodegeneration. In this study, it was tested whether BIL exhibits anti-inflammatory activities on inflammation response, or not. Methods : To elucidate the molecular mechanisms of BIL on pharmacological and biochemical actions in inflammation, we examined the effect of BIL on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. The investigation was focused on how BIL affect on inflammation-related mediators including various signals such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible NO synthase(iNOS), cyclooxygenase-2(COX-2), interleukin-6(IL-6), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), mitogen-activated protein kinases(MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) in LPS-stimulated RAW 264.7 cells. Results : We found that BIL inhibited LPS-induced NO, $PGE_2$, IL-6 and $TNF-{\alpha}$ productions as well as the expressions of iNOS and COX-2. Furthermore, BIL suppressed the LPS-induced phosphorylation for MAPK activation. Conclusions : These results suggest that BIL has inhibitory effects on LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$ production, as well as the expressions of iNOS and COX-2 in the murine macrophage. It seems that these inhibitory effects occur by blocking the phosphorylation of MAPKs for activation. Then, BIL suppressed the activation of nuclear factor $NF-{\kappa}B$ in nucleus. These observations suggest that BIL has anti-inflammatory effect by inhibiting.

Lipoteichoic Acid Isolated from Staphylococcus aureus Induces Both Epithelial-Mesenchymal Transition and Wound Healing in HaCaT Cells

  • Kim, Seongjae;Kim, Hyeoung-Eun;Kang, Boyeon;Lee, Youn-Woo;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1820-1826
    • /
    • 2017
  • Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-${\kappa}B$ was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.

Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages

  • Bae, Deok-Sung;Kim, Young-Hoon;Pan, Cheol-Ho;Nho, Chu-Won;Samdan, Javzan;Yansan, Jamyansan;Lee, Jae-Kwon
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.108-113
    • /
    • 2012
  • Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin $E_2$ ($PGE_2$) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$).