• 제목/요약/키워드: nuclear factor κB

검색결과 375건 처리시간 0.023초

Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism

  • Bae, Won-Young;Jung, Woo-Hyun;Shin, So Lim;Kwon, Seulgi;Sohn, Minn;Kim, Tae-Rahk
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1031-1045
    • /
    • 2022
  • Postbiotics are defined as probiotics inactivated by heat, ultraviolet radiation, sonication, and other physical or chemical stresses. Postbiotics are more stable than probiotics, and these properties are advantageous for food additives and pharmacological agents. This study investigated the immunostimulatory effects of heat-treated Lactiplantibacillus plantarum LM1004 (HT-LM1004). Cellular fatty acid composition of L. plantarum LM1004 isolated form kimchi was analyzed by gas chromatography-mass spectrometry detection system. The nitric oxide (NO) content was estimated using Griess reagent. Immunostimulatory cytokines were evaluated using enzyme-linked immunosorbent assay. Relative protein expressions were evaluated by western blotting. Phagocytosis was measured using enzyme-labelled Escherichia coli particles. L. plantarum LM1004 showed 7 kinds of cellular fatty acids including palmitic acid (C16:0). The HT-LM1004 induced release of NO and upregulated the inducible NO synthase in RAW 264.7 macrophage cells. Tumor necrosis factor-α and interleukin-6 levels were also increased compared to control (non-treated macrophages). Furthermore, HT-LM1004 modulated mitogen-activated protein kinase (MAPK) subfamilies including p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase. Therefore, these immunostimulatory effects were attributed to the production of transcriptional factors, such as nuclear factor kappa B (NF-κB) and the activator protein 1 family (AP-1). However, HT-LM1004 did not showed significant phagocytosis of RAW 264.7 macrophage cells. Overall, HT-LM1004 stimulated MAPK/AP-1 and NF-κB expression, resulting in the release of NO and cytokines. These results will contribute to the development of diverse types of food and pharmacological products for immunostimulatory agents with postbiotics.

Licochalcone B Exhibits Anti-inflammatory Effects via Modulation of NF-κB and AP-1

  • Kim, Jin-Kyung;Jun, Jong-Gab
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.218-226
    • /
    • 2015
  • The present study investigated the mechanisms of licochalcone B (LicB)-mediated inhibition of the inflammatory response in murine macrophages. RAW264.7 murine macrophages were cultured in the absence or presence of lipopolysacharide (LPS) with LicB. LicB suppressed the generation of nitric oxide and the pro-inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. LicB also inhibited the expression of mRNA for inducible nitric oxide synthase and pro-inflammatory cytokines induced by LPS. Moreover, LicB inhibited nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 translocation into the nucleus in a dose-dependent manner. Thus, LicB mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-${\kappa}B$ and activator protein-1 signaling pathways in macrophages, which subsequently diminishes the expression and release of various inflammatory mediators. LicB shows promise as a therapeutic agent in inflammatory diseases.

Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB

  • Prasad, Rajapaksha Gedara;Choi, Yung Hyun;Kim, Gi-Young
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.110-118
    • /
    • 2015
  • According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\kappa}B$ (TNF-${\alpha}$) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-${\alpha}$ in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-${\alpha}$, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, $PGE_2$, and TNF-${\alpha}$ in LPS-treated BV2 microglial cells by suppressing ROS and NF-${\kappa}B$. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-${\kappa}B$ signaling pathway.

암 치료 표적으로써 prostate apoptosis response-4 (Par-4) (Prostate Apoptosis Response-4 (Par-4) as a Cancer Therapeutic Target)

  • 우선민;권택규
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.947-952
    • /
    • 2015
  • Par-4는 종양 억제 유전자로 암세포 선택적으로 세포사멸을 증진하는 기능을 가진다. Par-4 유전자는 nuclear localization sequences (NLS), leucine zipper (LZ), nuclear export sequence (NES), selective for apoptosis in cancer cells (SAC)의 네 가지 도메인을 가지고 있다. 이 중에서도 SAC 도메인이 Par-4에 의한 세포사멸에 중요한 역할을 하며, 이러한 Par-4의 활성화는 세포 내 경로와 세포 외 경로로 나누어진다. 세포질 내의 Par-4는 핵 내로 이동하여 NF-κB 매개의 세포 성장 경로를 억제하고 세포 밖으로 분비된 Par-4는 세포 표면에 존재하는 수용체인 GRP78과 결합하여 세포 사멸을 유도한다. 따라서 Par-4의 발현을 증가시키는 물질에 의한 세포 사멸뿐만 아니라 암세포에서 발현이 낮은 Par-4의 과발현을 통하여 세포사멸 민감화가 증진된다. 따라서 Par-4는 암 치료의 강력한 표적으로의 가능성을 가지고 있다.

Paeoniflorin ameliorates neuropathic pain-induced depression-like behaviors in mice by inhibiting hippocampal neuroinflammation activated via TLR4/NF-κB pathway

  • Bai, Hualei;Chen, Shize;Yuan, Tiezheng;Xu, Dongyuan;Cui, Songbiao;Li, Xiangdan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.217-225
    • /
    • 2021
  • Neuropathic pain (NP) that contributes to the comorbidity between pain and depression is a clinical dilemma. Neuroinflammatory responses are known to have potentially important roles in the initiation of NP and depressive mood. In this study, we aimed to investigate the effects of paeoniflorin (PF) on NP-induced depression-like behaviors by targeting the hippocampal neuroinflammation through the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. We used a murine model of NP caused by unilateral sciatic nerve cuffing (Cuff). PF was injected intraperitoneally once a day for a total of 14 days. Pain and depression-like behavior changes were evaluated via behavioral tests. Pathological changes in the hippocampus of mice were observed by H&E staining. The levels of proinflammatory cytokines in the hippocampus were detected using ELISA. Activated microglia were measured by immunohistochemical staining. The TLR4/NF-κB signaling pathway-associated protein expression in the hippocampus was detected by western blotting. We found that the PF could significantly alleviate Cuff-induced hyperalgesia and depressive behaviors, lessen the pathological damage to the hippocampal cell, reduce proinflammatory cytokines levels, and inhibit microglial over-activation. Furthermore, PF downregulated the expression levels of TLR4/NF-κB signaling pathway-related proteins in the hippocampus. These results indicate that PF is an effective drug for improving the comorbidity between NP and depression.

Aurantio-obtusin exerts an anti-inflammatory effect on acute kidney injury by inhibiting NF-κB pathway

  • Haiyan Xiang;Yun Zhang;Yan Wu;Yaling Xu;Yuanhao Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.11-19
    • /
    • 2024
  • Acute kidney injury (AKI) is one of the major complications of sepsis. Aurantio-obtusin (AO) is an anthraquinone compound with antioxidant and anti-inflammatory activities. This study was developed to concentrate on the role and mechanism of AO in sepsis-induced AKI. Lipopolysaccharide (LPS)-stimulated human renal proximal tubular epithelial cells (HK-2) and BALB/c mice receiving cecal ligation and puncture (CLP) surgery were used to establish in vitro cell model and in vivo mouse model. HK-2 cell viability was measured using MTT assays. Histological alterations of mouse renal tissues were analyzed via hematoxylin and eosin staining. Renal function of mice was assessed by measuring the levels of serum creatinine (SCr) and blood urea nitrogen (BUN). The concentrations of pro-inflammatory cytokines in HK-2 cells and serum samples of mice were detected using corresponding ELISA kits. Protein levels of factors associated with nuclear factor kappa-B (NF-κB) pathway were measured in HK-2 cells and renal tissues by Western blotting. AO exerted no cytotoxic effect on HK-2 cells and AO dose-dependently rescued LPS-induced decrease in HK-2 cell viability. The concentrations of pro-inflammatory cytokines were increased in response to LPS or CLP treatment, and the alterations were reversed by AO treatment. For in vivo experiments, AO markedly ameliorated renal injury and reduced high levels of SCr and BUN in mice underwent CLP operation. In addition, AO administration inhibited the activation of NF-κB signaling pathway in vitro and in vivo. In conclusion, AO alleviates septic AKI by suppressing inflammatory responses through inhibiting the NF-κB pathway.

RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할 (The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages)

  • 권다혜;김다혜;김민영;황보현;지선영;박세광;정지원;김미영;이혜숙;정재훈;남수완;황혜진;최영현
    • 생명과학회지
    • /
    • 제31권12호
    • /
    • pp.1110-1119
    • /
    • 2021
  • 본 연구의 목적은 LPS가 처리된 RAW 264.7 대식세포에서의 염증 반응이 미세먼지(PM2.5)에 의해 더욱 증가될 수 있는지를 조사하는 것이다. 이를 위하여 LPS와 미세먼지(PM2.5)가 단독으로 처리되거나 LPS가 존재하는 조건에서 미세먼지(PM2.5)가 처리된 RAW 264.7 세포에서 염증 매개변수와 ROS의 생성 정도 및 염증 조절 유전자들의 발현 수준을 조사하였다. 본 연구의 결과에 의하면 세포 독성이 없는 범위에서 LPS가 처리된 세포에서 미세먼지(PM2.5)는 염증성 매개 인자(NO 및 PGE2) 및 cytokine (IL-6 및 IL-1β)의 생성 수준이 각각의 단독 처리군에 비하여 매우 증가되었으며. 이는 이들의 생성에 관여하는 유전자들의 전사 및 번역 수준에서의 발현 증가와 연관성이 있었다. 또한, LPS가 처리된 RAW 264.7 세포에 미세먼지(PM2.5)가 노출되었을 때, 핵에서 NF-κB의 발현이 더욱 증가하였고, 세포질에서는 NF-κB 뿐만 아니라 IκB-α의 발현이 감소되었다. 이러한 결과는 LPS와 미세먼지(PM2.5)의 단독 처리에 비하여 동시 처리된 경우 NF-κB 신호계의 활성이 더욱 증가하여 염증성 유전자들의 전사 활성촉진에 기여하였음을 의미한다. 나아가 LPS가 처리된 RAW 264.7 세포에서 미세먼지(PM2.5)에 의해 ROS 생성이 크게 증가되었지만 NF-κB 억제제는 ROS의 생성을 감소시키지 못하였다. 그러나, ROS 생성을 인위적으로 억제하였을 경우, 미세먼지(PM2.5)에 의해 증가된 염증 매개 인자의 발현 및 생성과 NF-κB의 활성화가 모두 감소되었다. 따라서, 본 연구의 결과는 LPS가 처리된 RAW 264.7 세포에서 미세먼지(PM2.5)에 의해 유도된 NF-κB 매개 염증반응의 증가는 ROS 생성 의존적 현상임을 시사한다.

Wnt5a attenuates the pathogenic effects of the Wnt/β-catenin pathway in human retinal pigment epithelial cells via down-regulating β-catenin and Snail

  • Kim, Joo-Hyun;Park, Seoyoung;Chung, Hyewon;Oh, Sangtaek
    • BMB Reports
    • /
    • 제48권9호
    • /
    • pp.525-530
    • /
    • 2015
  • Activation of the Wnt/β-catenin pathway plays a pathogenic role in age-related macular degeneration (AMD) and is thus a potential target for the development of therapeutics for this disease. Here, we demonstrated that Wnt5a antagonized β-catenin response transcription (CRT) induced with Wnt3a by promoting β-catenin phosphorylation at Ser33/Ser37/Thr41 and its subsequent degradation in human retinal pigment epithelial (RPE) cells. Wnt5a decreased the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-α(TNF-α), and nuclear factor-κB (NF-κB), which was up-regulated by Wnt3a. Furthermore, Wnt5a increased E-cadherin expression and decreased cell migration by down-regulating Snail expression, thereby abrogating the Wnt3a-induced epithelial-mesenchymal transition (EMT) in human RPE cells. Our findings suggest that Wnt5a suppresses the pathogenic effects of canonical Wnt signaling in human RPE cells by promoting β-catenin phosphorylation and degradation. Therefore, Wnt5a has significant therapeutic potential for the treatment of AMD. [BMB Reports 2015; 48(9): 525-530]

Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells

  • Jang, Hyun-Jun;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • 제62권3호
    • /
    • pp.385-395
    • /
    • 2020
  • Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 ㎍/mL to 100 ㎍/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.

Lactic Acid Bacteria Isolated from Human Breast Milk Improve Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by Inhibiting NF-κB Signaling in Mice

  • Kyung-Joo Kim;Suhyun Kyung;Hui Jin;Minju Im;Jae-won Kim;Hyun Su Kim;Se-Eun Jang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1057-1065
    • /
    • 2023
  • Inflammatory bowel disease (IBD), a chronic inflammatory disease, results from dysregulation of the immune responses. Some lactic acid bacteria (LAB), including Lactobacillus, alleviate IBD through immunomodulation. In this study, the anti-colitis effect of LAB isolated from human breast milk was investigated in a mouse model induced acute colitis with 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS remarkably increased weight loss, colon shortening, and colonic mucosal proliferation, as well as the expression levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β. Oral administration of LAB isolated from human breast milk resulted in a reduction in TNBS-induced colon shortening, as well as induced cyclooxygenase (COX)-2, nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB). In addition, LAB suppressed inflammatory cytokines such as TNF-α, IL-6, and IL-1β, and thus showed an effect of suppressing the level of inflammation induced by TNBS. Furthermore, LAB alleviated gut microbiota dysbiosis, and inhibited intestinal permeability by increasing the expression of intestinal tight junction protein including ZO-1. Collectively, these results suggest that LAB isolated from human breast milk can be used as a functional food for colitis treatment by regulating NF-κB signaling, gut microbiota and increasing expression of intestinal tight junction protein.