• Title/Summary/Keyword: nuclear factor κB

Search Result 379, Processing Time 0.022 seconds

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Immune stimulating effects of Astragalus membranaceus and Zanthoxylum schinifolium 1:1 mixture in Raw264.7 cells (Raw264.7 세포에서 황기와 산초 1:1 혼합물의 면역 증진 효과)

  • Il Je Cho;Yeong Eun Yu;Sang Min Lee;Eun Ok Kim;Joon Heum Park;Sea Kwang Ku
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.519-526
    • /
    • 2023
  • Present study explored immunostimulatory effects of Astragalus membranaceus and Zanthoxylum schinifolium 1:1 (w:w) mixture (AZM-1:1) in Raw264.7 cells, mouse macrophage derived cells. Treatment with 100-400 ㎍/mL of AZM-1:1 in Raw264.7 cells significantly increased nitric oxide production in parallel with inducible nitric oxide synthase mRNA expression without affecting cytotoxicity. In addition, AZM-1:1 dose-dependently increased prostaglandin E2 production in conditioned medium along with cyclooxygenase-2 mRNA induction. Moreover, AZM-1:1 induces the transcription of tumor necrosis factor-α, interleukin-1β, interleukin-6, and monocyte chemoattractant protein-1. Immunoblot analyses revealed that AZM-1:1 significantly increased the phosphorylation of mitogen-activated protein kinases, provoked phosphorylation-mediated degradation of inhibitory-κBα, and phosphorylated p65. Furthermore, treatment with AZM-1:1 promoted phagocytosis of Escherichia coli particle labeled with green fluorescence. Taken together, AZM-1:1 may be a promising nutraceutical for stimulation the innate immune system, including macrophages.

Effects of Gastrodia elata Blune Water Extract on RANKL-induced Osteoclast Differentiation (천마가 RANKL에 의해 유도된 파골세포의 분화에 미치는 효과)

  • Choi, Yun-Hong;Song, Jeong-Hoon;Jang, Sung-Jo;Kim, Jin-Kook;Choi, Min-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.807-813
    • /
    • 2010
  • Impairment of balance between bone-resorbing osteoclasts and bone-forming osteoblasts result in bone disease. Especially, increased osteoclast formation and activity are responsible for bone diseases such as osteoporosis, rheumatoid arthritis, periodontal disease. Natural metabolites of plants have recently received much attention as an alternative tools for the development of novel therapeutic strategy. The aim of this study was to search the natural products to inhibit osteoclast differentiation and was to evaluate of its mechanism. Water extract of Gastrodia elata Blune significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages (BMMs) in a dose dependent manner. However, water extract of Gastrodia elata Blune did not affect cytotoxicity when compared with control. The mRNA expression of c-Fos, NFATc1, and TRAP induced by RANKL was inhibited by water extract of Gastrodia elata Blune treatment. Also, water extract of Gastrodia elata Blune inhibited the protein expression of c-Fos and NFATc1 expression in BMMs treated with RANKL. Water extract of Gastrodia elata Blune suppressed the phosphorylation of p38 induced by RANKL. In general, RANKL considerably inhibited the expression level of Id2 and MafB known as negative regulators of osteoclastogenesis, but RANKL did not inhibit Id2 and MafB expression in BMMs when it was co-treated with Gastrodia elata Blune. Taken together, these results suggest that Gastrodia elata Blune may be a useful drug in the treatment of bone-related disease.

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Korean Red Ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model

  • Song, Heewon;Won, Ji Eun;Lee, Jeonggeun;Han, Hee Dong;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.592-600
    • /
    • 2022
  • Background: Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods: RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-kB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results: According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions: Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.

Antiviral Potential of the Genus Panax: An updated review on their effects and underlying mechanism of action

  • Yibo Zhang;Xuanlei Zhong;Zhichao Xi;Yang Li;Hongxi Xu
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

Effects of a mixture of Citri Pericarpium and Scutellariae Radix on acute reflux esophagitis in rats (진피-황금 혼합물이 급성 역류성 식도염 흰쥐에 미치는 효과)

  • Lee, Jin A;Shin, Mi-Rae;Roh, Seong-Soo;Park, Hae-Jin
    • Journal of Nutrition and Health
    • /
    • v.54 no.3
    • /
    • pp.321-333
    • /
    • 2021
  • Purpose: Reflux esophagitis is a disease caused by the reflux of stomach contents and stomach acid etc. into the esophagus due to defect in the lower esophageal sphincter and is currently increasing worldwide. This study was conducted to evaluate the effect of a mixture of Citrus Reticulata and Scutellariae Radix (CS) extract on acute reflux esophagitis in rats. Methods: Rats were divided into five groups for examination: normal group (Normal, n = 8), water-treated acute reflux esophagitis rats (Control, n = 8), tocopherol 30 mg/kg body weight-treated acute reflux esophagitis rats (Toco, n = 8), CS 100 mg/kg body weight-treated acute reflux esophagitis rats (CS100, n = 8), CS 200 mg/kg body weight-treated acute reflux esophagitis rats (CS200, n = 8). The experimental groups were administrated of each treatment compounds and after 90 min, acute reflux esophagitis was induced through surgery. Rats were sacrificed 5 h after surgery. We measured the level of reactive oxygen species (ROS) in serum and analyzed the expression of nicotinamide adenine dinucleotide phosphate, inflammatory, and tight junction-related proteins by western blot in the esophageal tissues. Results: CS administration significantly protected the esophageal mucosal damage due to reflux esophagitis, and the level of ROS in the serum was significantly reduced with CS administration as compared to Control. In addition, CS administration significantly suppressed mitogen-activated protein kinase (MAPK or MAP kinase) and nuclear factor-kappa B (NF-κB) pathways and increased protein expressions of tight junction protein. Conclusion: These results suggest that the CS not only regulates the expression of inflammatory proteins by inhibiting oxidative stress, but also reduces damage to the esophageal mucosa by inhibiting the expression of tight junction proteins.

Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials

  • Hyeonjin Kim;Soohyun Jeong;Sung Wook Kim;Hyung-Jin Kim;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.59-69
    • /
    • 2024
  • This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.

Protective effect of Macleaya cordata isoquinoline alkaloids on lipopolysaccharide-induced liver injury in broilers

  • Jiaxin Chen;Weiren Yang;Hua Liu;Jiaxing Niu;Yang Liu;Qun Cheng
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.131-141
    • /
    • 2024
  • Objective: This experiment aimed to explore the protective action of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata on lipopolysaccharide (LPS)-induced liver injury in broilers. Methods: Total 216 healthy broilers were selected in a 21-d trial and assigned randomly to the following 3 treatments: control (CON) group, LPS group, and LPS+IA group. The CON and LPS groups were provided with a basal diet, whereas the LPS+IA group received the basal diet supplemented with 0.6 mg/kg Macleaya cordata IA. Broilers in LPS and LPS+IA groups were intraperitoneally injected with LPS (1 mg/kg body weight) at 17, 19, and 21 days of age, while those in CON group were injected with equivalent amount of saline solution. Results: Results showed LPS injection caused systemic and liver inflammation in broilers, inhibited immune function, and ultimately lead to liver injury. By contrast, supplementation of IA ameliorated LPS-induced adverse change in serum parameters, boosted immunity in LPS+IA group. Furthermore, IA suppressed the elevation of hepatic inflammatory cytokines and caspases levels induced by LPS, as well as the expressions of genes related to the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway. Conclusion: Dietary inclusion of 0.6 mg/kg Macleaya cordata IA could enhance immune function of body and inhibit liver damage via inactivating TLR4/MyD88/NF-κB signaling pathway in broilers.

Effects of Buja-tang Extract on Osteoarthritic Animal Model (부자탕 추출물이 골관절염 동물 모델에 미치는 영향)

  • Park, Jung-Hyun;Yang, Doo-Hwa;Woo, Chang-Hoon;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.17-32
    • /
    • 2021
  • Objectives The present study was designed to find out the therapeutic effects and possible underlying mechanism of Buja-tang, a herbal complex formula on experimental monosodium iodoacetate (MIA)-induced osteoarthritis. Methods Osteoarthritis models were created via intra-joint injection of MIA (50 μL with 80 mg/mL) in rats. Rats were divided into five groups and each group consisted of seven. Normal group was not injected MIA and did a normal diet. Control group injected MIA and received distilled water. Indo injected MIA and oral administration of 5 mg/kg of indomethacin. BJTL injected MIA and oral administration of 100 mg/kg of Buja-tang. BJTH injected MIA and oral administration of 200 mg/kg of Buja-tang. We analyzed weight-bearing ability of hind paws, oxidative stress related factor, antioxidant protein, inflammatory protein, inflammatory messenger and cytokine in joint tissue. Pathological observation of knee cartilage tissue structures was also performed with hematoxylin & eosin and safranin-O chromosomes. Results Weight-bearing ability of hind paws showed a tendency to reduce pain. The incidence of nicotinamide adenine dinucleotide phosphate oxidase and p22phox in articular tissue was significantly reduced, and the incidence of nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 and superoxide dismutases was significantly increased. The incidence of phosphorylated inhibitor of κBα, nuclear factor-kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β decreased significantly. In pathological observation, cartilage tissue damaged by MIAs in biopsy has significantly recovered from Buja-tang administration. Conclusions Buja-tang has anti-inflammation, antioxidation and pain relief effects. So this is thought to inhibit the progress of osteoarthritis in rat caused by the MIA.