• 제목/요약/키워드: nozzle geometry

검색결과 202건 처리시간 0.021초

합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구 (A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO))

  • 김슬기;심근선;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

The Review of Studies on Heat Transfer in Impinging Jet

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권4호
    • /
    • pp.196-205
    • /
    • 2005
  • In this paper, recent research trend on heat transfer in impinging jet is reviewed. We focused on submerged jet that air issued into air or liquid issued into liquid. To control and enhance the heat transfer in single jet, researchers have performed a lot of experiments by considering the nozzle geometry, impinging surface and active method such as jet vibration, secondary injection and suction flow. The studies on multiple jet have been mainly focused on finding out the optimum condition and on investigating many different factors concerned with application condition (crossflow, rotation and geometry etc.) and combined techniques (rib turbulator, pin fin, dimple and effusion hole etc.). All most experiments showed the detailed heat transfer data by using liquid crystal method, infrared camera technique and naphthalene sublimation method. Many numerical calculations have been performed to investigate the flow and heat transfer characteristics in laminar jet region. Various turbulence models such as $k-\varepsilon-\bar{\nu^2}$, modified $k-\varepsilon-f_{\mu}$ were applied to the calculation for turbulent jet and the predicted results showed a good agreement with the experimental data. Although a lot of studies on impinging jet have performed consistently up to recently, further studies are still required to understand the flow and heat transfer characteristics more accurately, and to give a guideline for optimum impinging jet design in various applications.

원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution)

  • 이공희;방영석;우승웅;정애주
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.271-277
    • /
    • 2014
  • 원자로 노심 입구에 위치한 내부 구조물들은 형상 및 노심 입구까지의 상대적 거리에 따라 노심 입구 유량분포에 상당한 영향을 미칠 수 있다. 본 연구에서는 원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향을 조사하기 위해 상용 전산유체역학 소프트웨어인 ANSYS CFX R.14를 사용하여 원자로 내부 구조물들의 실제 형상을 고려한 계산을 수행하였고 다공성 매질 가정을 적용한 계산 결과와 비교하였다. 결론적으로 노심 입구 상류에 위치한 원자로 내부 구조물의 실제 형상을 고려함으로써 노심 입구 유량 분포를 더 정확하게 예측할 수 있었다. 따라서 충분한 계산 자원이 확보된 조건인 경우라면 정확한 노심 입구 유량분포를 계산하기 위해 노심 입구 상류에 위치한 원자로 내부 구조물들(예: 하부지지구조물 바닥판 및 노내 계측기 노즐 지지판)의 실제 형상을 고려해서 계산하는 것이 필요하다.

노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구 (A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes)

  • 백재상;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF

연료 및 공기의 혼합구조가 로타리 킬른 용 버너 화염에 미치는 영향 (Mixed Structure Effect of Fuel and Air on Rotary Kiln Burner Flame)

  • 김영호;이철우;김인수;임영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.339-342
    • /
    • 2014
  • Rotary kiln produces lime from limestone through thermal decomposition. Ring formation in kiln internal wall is known issue that decreases productivity. The cause of ring formation is temperature imbalance as flame leans toward upper wall. Therefore, burner nozzle geometry was changed to improve air-fuel mixing state which leads to prevention of ring formation. CFD simulation and experimental test were performed in this study to investigate the effect of air-fuel mixing on flame structure, temperature and $NO_X$ concentration. It is shown that combustion efficiency has been enhanced and $NO_X$ concentration has been decreased by using swirl flow for secondary combustion air. It's also shown that flame has been straightened by using straight flow for secondary combustion air.

  • PDF

마이크로 고체 추진제 추력기 요소의 성능 평가 (Performance Evaluation of Components of Micro Solid Propellant Thruster)

  • 이종광;이대훈;최성한;권세진
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1264-1270
    • /
    • 2004
  • In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and the effect of geometry was evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

Shroud로 감싸있는 제트 베인의 측력 특성 (Characteristics of Side force using Jet Vanes in a Shroud)

  • 성홍계;황용석
    • 한국항공우주학회지
    • /
    • 제30권4호
    • /
    • pp.84-91
    • /
    • 2002
  • Shroud로 감싸여 있는 제트베인의 추력 방향 조종 특성은 shoroud가 없는 제트베인의 조종 특성보다 매우 복잡하며 그 특성이 매우 특이하다. 이러한 제트 베인 시스템의 조종 특성을 파악하기 위하여 베인과 shroud 고유의 공력 특성은 물론 shroud/베인간의 유동 간섭에 대한 연구가 요구된다. 본 연구에서는 이를 위하여 반실험적인 모델링을 개발하고, 실제 기하학적 모델을 고려한 삼차원 유동해석과 실기형 연소시험을 수행하여 복잡한 물리적현상을 도출하여 shroud로 감싸여 있는 제트베인의 측력 특성을 제시하였다.

Numerical Investigation of Bubble Characteristics in a Two-Dimensional Fluidized Bed

  • Kang, Kyung-Tae;Kook, Jeong-Jin;Park, Seung-Ho
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.52-57
    • /
    • 2002
  • A numerical investigation using a commercial CFD program of the Inter-Phase Slip Algorithm has been carried out for detail characteristics of particle motions and bubble behaviors in a two dimensional fluidized bed. The bed simulated has been operated with three different distributor geometries, such as bubble cap, nozzle, and perforated plate types. Experiments using a slit-type two-dimensional fluidized bed and a cylinder-type fluidized bed have been performed in order to confirm the simulation model. In addition, the numerical results are compared with the wellknown correlation of bubble sizes and bubble rising velocities by Mori and Wen [1]. The simulation model that we applied is shown to be useful to understand the relation between bubble behaviors and distributor geometries.

  • PDF

쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구 (A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting)

  • 하만영;최봉석
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

곡면에서의 열전달성능 향상을 위한 충돌제트의 최적설계 (Design Optimization of an Impingement Jet on Concave Surface for Enhancement of Heat Transfer Performance)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.100-103
    • /
    • 2011
  • In the present work, a numerical study of fluid flow and heat transfer on the concave surface with impinging jet has been performed by solving three-dimensional Reynods-averaged Naver-Stokes(RANS) equations. The constant temperature condition was applied to the concave impingement surface. The inclination angle of jet nozzle and the distance between jet nozzles are chosen as design variables under equivalent mass flow rate of working fluid into cooling channel, and area averaged Nusselt number on concave impingement surface is set as the objective function. Thirteen training points are obtained by Latin Hypercube sampling method, and the PEA model is constructed by using the objective function values at the trainging points. And, the sequential quadratic programming is used to search for the optimal paint from the PBA model. Through the optimization, the optimal shape shows improved heat transfer rate as compared to the reference geometry.

  • PDF