• Title/Summary/Keyword: novelty detection

Search Result 42, Processing Time 0.042 seconds

CNN-Based Novelty Detection with Effectively Incorporating Document-Level Information (효과적인 문서 수준의 정보를 이용한 합성곱 신경망 기반의 신규성 탐지)

  • Jo, Seongung;Oh, Heung-Seon;Im, Sanghun;Kim, Seonho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.231-238
    • /
    • 2020
  • With a large number of documents appearing on the web, document-level novelty detection has become important since it can reduce the efforts of finding novel documents by discarding documents sharing redundant information already seen. A recent work proposed a convolutional neural network (CNN)-based novelty detection model with significant performance improvements. We observed that it has a restriction of using document-level information in determining novelty but assumed that the document-level information is more important. As a solution, this paper proposed two methods of effectively incorporating document-level information using a CNN-based novelty detection model. Our methods focus on constructing a feature vector of a target document to be classified by extracting relative information between the target document and source documents given as evidence. A series of experiments showed the superiority of our methods on a standard benchmark collection, TAP-DLND 1.0.

A Novelty Detection Algorithm for Multiple Normal Classes : Application to TFT-LCD Processes (다중 정상 하에서 단일 클래스 분류기법을 이용한 이상치 탐지 : TFT-LCD 공정 사례)

  • Joo, Tae Woo;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • Novelty detection (ND) is an effective technique that can be used to determine whether a future observation is normal or not. In the present study we propose a novelty detection algorithm that can handle a situation where the distributions of target (normal) observations are inhomogeneous. A simulation study and a real case with the TFT-LCD process demonstrated the effectiveness and usefulness of the proposed algorithm.

Detection of System Abnormal State by Cyber Attack (사이버 공격에 의한 시스템 이상상태 탐지 기법)

  • Yoon, Yeo-jeong;Jung, You-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1027-1037
    • /
    • 2019
  • Conventional cyber-attack detection solutions are generally based on signature-based or malicious behavior analysis so that have had difficulty in detecting unknown method-based attacks. Since the various information occurring all the time reflects the state of the system, by modeling it in a steady state and detecting an abnormal state, an unknown attack can be detected. Since a variety of system information occurs in a string form, word embedding, ie, techniques for converting strings into vectors preserving their order and semantics, can be used for modeling and detection. Novelty Detection, which is a technique for detecting a small number of abnormal data in a plurality of normal data, can be performed in order to detect an abnormal condition. This paper proposes a method to detect system anomaly by cyber attack using embedding and novelty detection.

Applying Novelty Detection for Checking the Integrity of BIM Entity to IFC Class Associations (Novelty detection을 이용한 BIM객체와 IFC 클래스 간 매핑의 무결성 검토에 관한 연구)

  • Koo, Bonsang;Shin, Byungjin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.6
    • /
    • pp.78-88
    • /
    • 2017
  • With the growing use of BIM in the AEC industry, various new applications are being developed to meet these specific needs. Such developments have increased the importance of Industry Foundation Classes, which is the international standard for sharing BIM data and thus ensuring interoperability. However, mapping individual BIM objects to IFC entities is still a manual task, and is a main cause for errors or omissions during data transfers. This research focused on addressing this issue by applying novelty detection, which is a technique for detecting anomalies in data. By training the algorithm to learn the geometry of IFC entities, misclassifications (i.e., outliers) can be detected automatically. Two IFC classes (ifcWall, ifcDoor) were trained using objects from three BIM models. The results showed that the algorithm was able to correctly identify 141 of 160 outliers. Novelty detection is thus suggested as a competent solution to resolve the mapping issue, mainly due to its ability to create multiple inlier boundaries and ex ante training of element geometry.

Analysis of Novelty Detection Properties of Autoassociative MLP (자기연상 다층퍼셉트론의 이상 탐지 성질 분석)

  • Lee, Hyoung-joo;Hwang, Byung-ho;Cho, Sungzoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.147-161
    • /
    • 2002
  • In novelty detection, one attempts to discriminate abnormal patterns from normal ones. Novelty detection is quite difficult since, unlike usual two class classification problems, only normal patterns are available for training. Auto-Associative Multi-Layer Perceptron (AAMLP) has been shown to provide a good performance based upon the property that novel patterns usually have larger auto-associative errors. In this paper, we give a mathematical analysis of 2-layer AAMLP's output characteristics and empirical results of 2-layer and 4-layer AAMLPs. Various activation functions such as linear, saturated linear and sigmoid are compared. The 2-layer AAMLPs cannot identify non-linear boundaries while the 4-layer ones can. When the data distribution is multi-modal, then an ensemble of AAMLPs, each of which is trained with pre-clustered data is required. This paper contributes to understanding of AAMLP networks and leads to practical recommendations regarding its use.

Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study

  • Ni, Yi-Qing;Wang, Junfang;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.337-362
    • /
    • 2015
  • This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.

Novelty Detection using SOM-based Methods (자기구성지도 기반 방법을 이용한 이상 탐지)

  • Lee, Hyeong-Ju;Jo, Seong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.599-606
    • /
    • 2005
  • Novelty detection involves identifying novel patterns. They are not usually available during training. Even if they are, the data quantity imbalance leads to a low classification accuracy when a supervised learning scheme is employed. Thus, an unsupervised learning scheme is often employed ignoring those few novel patterns. In this paper, we propose two ways to make use of the few available novel patterns. First, a scheme to determine local thresholds for the Self Organizing Map boundary is proposed. Second, a modification of the Learning Vector Quantization learning rule is proposed so that allows one to keep codebook vectors as far from novel patterns as possible. Experimental results are quite promising.

  • PDF

Experiments on the Novelty Detection Capability of Auto-Associative Multi-Layer Perceptron (자기연상 다층퍼셉트론의 이상 탐지 성능에 대한 실험)

  • Lee Hyeong Ju;Hwang Byeong Ho;Jo Seong Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.632-638
    • /
    • 2002
  • In novelty detection, one attempts to discriminate abnormal patterns from normal ones. Novelty detection is quite difficult since, unlike usual two class classification problems, only normal patterns are available for training. Auto-Associative Multi-Layer Perceptron (AAMLP) has been shown to provide a good performance based upon the property that novel patterns usually have larger auto-associative errors. In this paper, we give a mathematical analysis of 2-layer AAMLP's output characteristics and empirical results of 2-layer and 4-layer AAMLPs. Various activation functions such as linear, saturated linear and sigmoid are compared. The 2-layer AAMLPs cannot identify non-linear boundaries while the 4-layer ones can. When the data distribution is multi-modal, then an ensemble of AAMLPs, each of which is trained with pre-clustered data is required. This paper contributes to understanding of AAMLP networks and leads to practical recommendations regarding its use.

  • PDF

Estimating the Reliability of Virtual Metrology Predictions in Semiconductor Manufacturing : A Novelty Detection-based Approach (이상치 탐지 방법론을 활용한 반도체 가상 계측 결과의 신뢰도 추정)

  • Kang, Pil-Sung;Kim, Dong-Il;Lee, Seung-Kyung;Doh, Seung-Yong;Cho, Sung-Zoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.46-56
    • /
    • 2012
  • The purpose of virtual metrology (VM) in semiconductor manufacturing is to predict every wafer's metrological values based on its process equipment data without an actual metrology. In this paper, we propose novelty detection-based reliability estimation models for VM in order to support flexible utilization of VM results. Because the proposed model can not only estimate the reliability of VM, but also identify suspicious process variables lowering the reliability, quality control actions can be taken selectively based on the reliance level and its causes. Based on the preliminary experimental results with actual semiconductor manufacturing process data, our models can successfully give a high reliance level to the wafers with small prediction errors and a low reliance level to the wafers with large prediction errors. In addition, our proposed model can give more detailed information by identifying the critical process variables and their relative impacts on the low reliability.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.