• 제목/요약/키워드: novel food microorganism

검색결과 14건 처리시간 0.027초

바이오기술을 이용한 식품소재 개발의 국내·외 현황 및 전망 (Current status and prospect of novel food materials developed by using biotechnology)

  • 유상호
    • 식품과학과 산업
    • /
    • 제52권2호
    • /
    • pp.171-187
    • /
    • 2019
  • Novel food materials can be produced based on biotechnology such as genetic recombination, microbial fermentation, and enzymatic engineering by utilizing living organisms such as animal, plant, and microorganism or by applying the enzymes isolated from them. Especially, exploration and development of novel prebiotics and probiotics attracted great attention worldwide in the food industry, of which the research and industrial trends in food biotechnology field are promoting the production of next generation sweeteners and proliferation of beneficial bacteria in gastrointestinal tract. Development and commercialization of novel food materials by domestic bioprocessing technology have been sluggish due to the GMO/LMO food safety issues. Meanwhile, the US and EU do not perceive badly about gene manipulation technology, and the research is most active in the fields of crops and GMMs, respectively. Genetic scissors, which are considered as next generation technology, are notable since foreign genes do not remain in final products.

Isolation of a Novel Gellan-Depolymerizing Bacillus sp. Strain YJ-1

  • Jung, Yu-Jin;Park, Cheon-Seok;Lee, Hyeon-Gyu;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1868-1873
    • /
    • 2006
  • A novel microorganism that could degrade high molecular weight gellan was screened and isolated from soil. On gellan plate, the microorganism grew well and completely liquefied the plate. The gellan-degrading microorganism was isolated by pure culture on glucose and nutrient agar medium afterwards. The 16S rDNA sequence analysis and biochemical tests using an API 50CHB/20E kit revealed that the strain belonged to Bacillus sp. The isolate, named as Bacillus sp. YJ-1, showed optimum gellan-degrading activity in 0.5% gellan medium at pH 7.5 and 37$^{\circ}C$. The activity was measured and evaluated by the thiobarbituric acid and thin-layer chromatography method. Mass spectrometry revealed that the major gellan.. depolymerized product was an unsaturated tetrasaccharide consisting of $\Delta$4,5-glucuronic acid-(1$\rightarrow$4 )-$\beta$-D-glucose-(1$\rightarrow$4)- $\alpha$-L-rhamnose-(1$\rightarrow$3)-$\beta$-D-glucose, which is a dehydrated repeating unit of gellan, thus the enzyme was identified as gellan lyase. When the gellan was present in the medium, the gellan-degrading activity was much higher than that in glucose-grown cells. These results indicate that in the presence of gellan, Bacillus sp. YJ-1 is able to metabolize the gellan by inducing gellan-degrading enzymes that can degrade gellan into small molecular weight oligosaccharides, and then the gellan. depolymerized products are taken up by the cells and utilized by intracellular enzymes.

Purification and Characterization of Novel Antimicrobial Peptide from the Skin of the Hagfish , Eptatretus burgeri

  • Hwang, Eun-Young;Seo, Jung-Kil;Kim, Chan-Hee;Go, Hye-Jin;Kim, Eun-jung;Chung, Joon-Ki;Rye, Hong-Soo;Park, Nam-Gyu
    • Preventive Nutrition and Food Science
    • /
    • 제4권1호
    • /
    • pp.28-32
    • /
    • 1999
  • A novel antimicrbial peptide , named HFS-I, was isolated and characterized from the skin of the hagfish, Eptatretus bugeri. The decapeptide with a molecular mass of 1279.5 Da was purified to homogeneity using a gel-filtration column, ion-exchange and C18 reverse-phase high performance liquid chromatograpy . The complete amino acid sequence of HFS-I, which was determined by a combination of an automated amino acid sequencing and FAB-MS, was F-P-W-W-L-S-G-K-Y-P-NH2. Comparison of the amino acid sequence with those of other known antimicrobial peptides revealed that HFS-I was a novel antimicrobial peptide. HFS-I showed a weak antimicrobial activity in vitro aganinst a broad spectrum of microorganism without hemolytic acitivity.

  • PDF

Enterococcus 속 박테리아의 안전성과 식품발효용 종균 개발의 방향성 (Safety of the genus Enterococcus and the development of food fermentation starters in Korea: Current status and future steps)

  • 이종훈
    • 한국식품과학회지
    • /
    • 제52권1호
    • /
    • pp.11-18
    • /
    • 2020
  • 발효식품의 우점종 Enterococcus 속 박테리아는 식품발효에 중요한 역할을 담당할 뿐만 아니라 사람과 가축의 프로바이오틱스로 사용되는 긍정적 측면을 가지고 있지만, 균혈증, 심내막염 등의 병원감염을 일으키는 병원균으로도 알려져 있다. 또한 여러 항생제에 대한 내성균주와 부착분자, 선모, 용혈소 등의 독성인자 보유 균주들이 발견되고 있어 식품용 미생물 및 프로바이오틱스로서의 적합성에 의문이 제기되고 있다. 본 총설에서는 우선 Enterococcus의 긍적적 및 부정적 측면에 대한 정보를 제공하여 논란이 되고 있는 문제점을 제시하였고, 유전체 연구를 통하여 부정적인 측면을 보유하지 않은 식품산업에서 활용할 수 있는 균주 선발 방향을 검토하였다. 또한 우리나라 전통발효식품용 종균개발 현황과 신규 식품용 미생물 인허가 제도를 검토하여 문제점을 파악하였다. 결론으로 Enterococcus 연구결과에 근거 우리나라 신규 식품용 미생물의 안전성 평가 방향성을 제시하였다.

국내·외 식품용 유전자변형미생물 안전성 심사 현황 및 전망 (Status and prospect of safety evaluation of genetically modified microorganism (GMM) for domestic and foreign food application)

  • 김성보;김양희
    • 식품과학과 산업
    • /
    • 제52권2호
    • /
    • pp.153-170
    • /
    • 2019
  • 바이오기술의 비약적인 발전에 따라 식품산업에서도 유전자변형미생물을 이용한 효소제 연구가 활발히 이루어지고 있으나, 국내에서는 이를 실제 산업에 이용하기 위한 식품 및 식품첨가물에 대한 적합한 법적 규제수준과 심사관리 현황에 대한 사례가 매우 부족한 실정이다. 현재까지 국내에서 식품 생산을 목적으로 한 유전자변형미생물의 심사 승인사례는 총 6건으로 그 용도가 기능성 감미료 제조에 국한되어 있다. 생산공정이용 또는 밀폐환경이용을 목적으로 개발한 유전자변형미생물이더라도 식품에 적용하는 경우 안전성 심사 시 환경위해성 심사를 포함해야 하며, 이를 이용하여 제조된 식품 및 식품첨가물은 식품원료 등의 한시적기준 심사를 별도로 진행해야 한다. 반면, 해외에서 유전자변형미생물을 이용하여 제조된 제품을 단순 수입 판매하고자 하는 경우 최종 제품에 대한 심사만 요구되고 있어, 국내에서 직접 제조를 하고자 하는 경우에 비하여 인허가 심사에 소요되는 비용 기간에서 유리한 구조이다. 기술 선진국인 미국 유럽은 직접 섭취가 아닌 식품가공을 목적으로 하고 최종 제품에 유전자변형 미생물 및 유래물질이 잔존하지 않을 경우, 다양한 법규 제도를 통하여 합리적인 수준에 안전성 심사의 기준을 세분화하고 단계별로 완화하고 있다. 이러한 제도적 장치들은 '제조'의 관점에서 자국의 개발자가 보다 합리적이고 효율적으로 기술 상업화를 할 수 있는 환경을 조성하는데 크게 기여한다. 국내에서도 2013년부터 안전등급 1등급에 해당하는 유전자변형미생물을 생산공정에만 이용하는 경우는 안전성 평가 자체보다는 밀폐시설의 설치 및 운영을 체계화하는데 중점을 두고자 하였다. 그러나 이러한 보완 제도는 아직까지 산업용 LMO에 국한하여 시행되고 있어, 앞으로 그 범위를 식품용 LMO까지 확대하기 위한 산 학 연의 관심과 논의가 필요하다. 본 기고문에서는 식품용 유전자변형미생물의 국내와 선진국의 심사사례, 법규체계 및 심사기준에 대한 비교 분석을 통하여 국내 관련 법규제도개선의 기회를 마련하고자 한다.

Physicochemical Properties of Poly-γ-glutamic Acid Produced by a Novel Bacillus subtilis HA Isolated from Cheonggukjang

  • Seo, Ji-Hyun;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.354-361
    • /
    • 2008
  • A novel bacterium isolated from Cheonggukjang was identified as a glutamate-dependent Bacillus subtilis HA with 98.3% similarity to Bacillus subtilis Z99104. Optimization of poly-$\gamma$-glutamic acid ($\gamma$-PGA) production by modulating fermentation factors including carbon sources, nitrogen sources, inorganic salts and fermentation time was investigated. Optimum culture broth for $\gamma$-PGA production consisted of 3% glutamate, 3% glucose and various salts, resulting in the PGA production of 22.5 g/L by shaking culture for 72 hr at $37^{\circ}C$. Average molecular weight of $\gamma$-PGA was determined to be 1,220 kDa through MALLS analysis. The $\gamma$-PGA solution showed a typical pseudoplastic flow behavior, and a great decrease in consistency below pH 6.0 regardless of the same molecular weight of $\gamma$-PGA. The molecular weights of isolated $\gamma$-PGA were drastically decreased by heat treatment in various acidic conditions, resulting in different hydrolysis of $\gamma$-PGA. The consistency of $\gamma$-PGA solution was greatly decreased with increase heating time in acidic conditions.

Penicillium ulleungdoense sp. nov. from Ulleung Island in Korea

  • Choi, Doo-Ho;You, Young-Hyun;Lee, In-Seon;Hong, Seung-Bum;Jung, Tea-Yeol;Kim, Jong-Guk
    • Mycobiology
    • /
    • 제49권1호
    • /
    • pp.46-53
    • /
    • 2021
  • In a study of the fungal diversity on Ulleung Island in Korea, three novel strains of Penicillium were isolated. Different sites on Ulleung Island were selected for collecting endophytic fungi, and three endophytic fungal strains showed unique morphological characteristics. DNA sequence of the internal transcribed spacer, β-tubulin, calmodulin, and RNA polymerase II second largest subunit regions of the strains were analyzed and they showed unique taxonomic position from the other species of Penicillium section Sclerotiora. The new strains were named Penicillium ulleungdoense sp. nov. As the novel endophytic Penicillium taxa were discovered in a unique environment, the data could be meaningful for understanding the geographical distribution of Ascomycetes on Ulleung Island.

Cloning of Four Genes Involved in Limonene Hydroxylation from Enterobacter cowanii 6L

  • Yang, Eun-Ju;Park, Yeon-Jin;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1169-1176
    • /
    • 2007
  • Genes encoding proteins responsible for limonene catabolism were cloned from a limonene-degrading microorganism, Enterobacter cowanii 6L, which was isolated from citron (Citrus junos) peel. The 8.6, 4.7, and 7.7 kb fragments (CD3, CD4, and CD6) of E. cowanii 6L chromosomal DNA that confer to E. coli the ability to grow on limonene have been cloned and their corresponding DNA sequences were determined. Nine open reading frames (ORFs) were identified, and the four ORFs (921 bp of CD3-2; 1,515 bp of CD4-1; 1,776 bp of CD6-1; and 1,356 bp of CD6-2) that encode limonene hydroxylase were confirmed by independently expressing these genes in E. coli. FAD and NADH were found to stimulate the hydroxylation reaction if added to cell extracts from E. coli recombinants, and multiple compounds (linalool, dihydrolinalool, perillyl alcohol, (${\alpha}-terpineol$, and ${\gamma}-terpineol$) were the principal products observed. Our results suggest that the isolate E. cowanii 6L has a broad metabolic capability including utilization of limonene. This broad metabolic ability was confirmed by identifying four novel limonene hydroxylase functional ORFs in E. cowanii 6L.

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • 한국미생물·생명공학회지
    • /
    • 제49권4호
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.

프로바이오틱스로서의 Lactobacillus acidophilus (Lactobacillus acidophilus as a Probiotics)

  • 오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권3호
    • /
    • pp.155-166
    • /
    • 2019
  • Bacteria from the genus Lactobacillus are important for the production of fermented food and dairy products, and as symbionts in human and animals. Lactobacillus acidophilus has widely been used in the production of yogurt, health foods, and even medicines. The efficacy of L. acidophilus has been proven with regards to the reduction of cholesterol, prevention and treatment of diarrhea, modulation of the immune system, suppression of cancer, etc. Using molecular biology tools, Lactobacillus acidophilus has now been reclassified into six species: L. acidophilus, L. amylovorus, L. crispatus, L gallinarium, L. gasseri, and L. johnsonii. Thus, since L. acidophilus has now been marked as a newly defined species, caution is advised when reading future publications regarding this bacterium. In this article, the results of the reclassification of L. acidophilus are mentioned after an analysis of its field inheritance was performed by my research team. Especially, L. amylovorus KU4 (formerly named as L. acidophilus KU4; KCCM 10975P) is a novel probiotic strain that is isolated from humans; it has the ability to reduce cholesterol. It has also been reported as a microorganism that effectively inhibits the growth of pathogenic E. coli. However, this Korean patent (No 10-1541280) refers to a strain obtained from calves; the origin of this strain was incorrectly labeled. Furthermore, after the discovery of L. acidophilus in 1900, its role in intestinal microbiological research was described and its utilization as a probiotic was presented.