• Title/Summary/Keyword: novel beam theory

Search Result 39, Processing Time 0.014 seconds

Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory

  • Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.621-631
    • /
    • 2018
  • In this paper, an exact analytical solution is developed for the analysis of the post-buckling non-linear response of simply supported deformable symmetric composite beams. For this, a new theory of higher order shear deformation is used for the analysis of composite beams in post-buckling. Unlike any other shear deformation beam theories, the number of functions unknown in the present theory is only two as the Euler-Bernoulli beam theory, while three unknowns are needed in the case of the other beam theories. The theory presents a parabolic distribution of transverse shear stresses, which satisfies the nullity conditions on both sides of the beam without a shear correction factor. The shear effect has a significant contribution to buckling and post-buckling behaviour. The results of this analysis show that classical and first-order theories underestimate the amplitude of the buckling whereas all the theories considered in this study give results very close to the static response of post-buckling. The numerical results obtained with the novel theory are not only much more accurate than those obtained using the Euler-Bernoulli theory but are almost comparable to those obtained using higher order theories, Accuracy and effectiveness of the current theory.

A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams

  • Zidi, Mohamed;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.145-153
    • /
    • 2017
  • In this article, a novel simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) beams is proposed. The beauty of this theory relies on its 2-unknowns displacement field as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton's principle. Analytical solutions for the bending and free vibration analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending and dynamic of FG beams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory results. The results obtained are found to be accurate.

A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams

  • Bekhadda, Ahmed;Cheikh, Abdelmadjid;Bensaid, Ismail;Hadjoui, Abdelhamid;Daikh, Ahmed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.189-206
    • /
    • 2019
  • In this work, a novel first-order shear deformation beam theory is applied to explore the vibration and buckling characteristics of thick functionally graded beams. The material properties are assumed to vary across the thickness direction in a graded form and are estimated by a power-law model. A Fourier series-based solution procedure is implemented to solve the governing equation derived from Hamilton's principle. The obtained results of natural frequencies and buckling loads of functionally graded beam are checked with those supplied in the literature and demonstrate good achievement. Influences of several parameters such as power law index, beam geometrical parameters, modulus ratio and axial load on dynamic and buckling behaviors of FGP beams are all discussed.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Innovative displacement-based beam-column element with shear deformation and imperfection

  • Tang, Yi-Qun;Ding, Yue-Yang;Liu, Yao-Peng;Chan, Siu-Lai;Du, Er-Feng
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • The pointwise equilibrium polynomial (PEP) element considering local second-order effect has been widely used in direct analysis of many practical engineering structures. However, it was derived according to Euler-Bernoulli beam theory and therefore it cannot consider shear deformation, which may lead to inaccurate prediction for deep beams. In this paper, a novel beam-column element based on Timoshenko beam theory is proposed to overcome the drawback of PEP element. A fifth-order polynomial is adopted for the lateral deflection of the proposed element, while a quadric shear strain field based on equilibrium equation is assumed for transverse shear deformation. Further, an additional quadric function is adopted in this new element to account for member initial geometrical imperfection. In conjunction with a reliable and effective three-dimensional (3D) co-rotational technique, the proposed element can consider both member initial imperfection and transverse shear deformation for second-order direct analysis of frame structures. Some benchmark problems are provided to demonstrate the accuracy and high performance of the proposed element. The significant adverse influence on structural behaviors due to shear deformation and initial imperfection is also discussed.

Distortional buckling formulae for cold-formed steel rack-section members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.49-75
    • /
    • 2004
  • The paper derives, validates and illustrates the application of GBT-based formulae to estimate distortional critical lengths and bifurcation stress resultants in cold-formed steel rack-section columns, beams and beam-columns with arbitrarily inclined mid-stiffeners and four support conditions. After a brief review of the Generalised Beam Theory (GBT) basics, the main concepts and procedures employed to obtain the formulae are addressed. Then, the GBT-based estimates are compared with exact results and, when possible, also with values yielded by formulae due to Lau and Hancock, Hancock and Teng et al. A few remarks on novel aspects of the rack-section beam-column distortional buckling behaviour, unveiled by the GBT-based approach, are also included.

Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory

  • Matouk, Hakima;Bousahla, Abdelmoumen Anis;Heireche, Houari;Bourada, Fouad;Bedia, E.A. Adda;Tounsi, Abdelouahed;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Benrahou, K.H.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.293-305
    • /
    • 2020
  • In the current research, the free vibrational behavior of the FG nano-beams integrated in the hygro-thermal environment and reposed on the elastic foundation is investigated using a novel integral Timoshenko beam theory (ITBT). The current model has only three variables unknown and requires the introduction of the shear correction factor because her uniformed variation of the shear stress through the thickness. The effective properties of the nano-beam vary according to power-law and symmetric sigmoid distributions. Three models of the hygro-thermal loading are employed. The effect of the small scale effect is considered by using the nonlocal theory of Eringen. The equations of motion of the present model are determined and resolved via Hamilton principle and Navier method, respectively. Several numerical results are presented thereafter to illustrate the accuracy and efficiency of the actual integral Timoshenko beam theory. The effects of the various parameters influencing the vibrational responses of the P-FG and SS-FG nano-beam are also examined and discussed in detail.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

Novel Method for Numerical Analyses of Tapered Geometrical Non-linear Beam with Three Unknown Parameters (3개의 미지변수를 갖는 변단면 기하 비선형 보의 수치해석 방법)

  • Lee, Byoung Koo;Oh, Sang Jin;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • This paper deals with a novel method for numerical analyses of the tapered geometrical non-linear beam with three unknown parameters, subjected a floating point load. The beams with hinged-movable end constraint are chosen as the objective beam. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The first order simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. A novel numerical method for solving these equations is developed by using the iteration technique. The processes of the solution method are extensively discussed through a typical numerical example. For validating theories developed herein, laboratory scaled experiments are conducted.