• Title/Summary/Keyword: notoginsenoside Fe

Search Result 5, Processing Time 0.02 seconds

Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography

  • Liu, Fang;Ma, Ni;Xia, Fang-Bo;Li, Peng;He, Chengwei;Wu, Zhenqiang;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Background: Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods: An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results: The dried PNL powder was immersed in the distilled water at $50^{\circ}C$ for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion: Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.

Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector

  • Liu, Fang;Ma, Ni;He, Chengwei;Hu, Yuanjia;Li, Peng;Chen, Meiwan;Su, Huanxing;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • Background: Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Methods: Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Results: Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of $35^{\circ}C$. This developed HPLC-UV method provides an adequate linearity ($r^2$ > 0.999), repeatability (relative standard deviation, RSD < 2.98%), and inter- and intraday variations (RSD < 4.40%) with recovery (98.7-106.1%) of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. Conclusion: These findings are beneficial to the quality control of PNL and its relevant products.

A Chemical Study of the Saponins and Flavonoids of Dwarf Ginseng (Panax trifolius L.) and Its Comparison to Related Species in the Araliaceae (왜생삼 (Panax trifolius L.)의 사포닌과 프라보노이드의 화학적 연구 및 오가과에 속하는 유연종과의 성분 비교연구)

  • Lee Taikwang M.;Marderosian Ara Der
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.141-146
    • /
    • 1988
  • Dwarf ginseng (Panax trifolius L.) is a member of the ginseng family (Araliaceae). which is indigenous to North America and is distributed from Southern Canada to the Northern United States. In total. nine compounds were isolated from the leaves of Dwarf gineng. Of these. four were identified as flavonoids and five were found to be ginsenosides. Two of the flavonoids were identified to be kaempferol-3. 7-dirhamnoside and kaempferol-3-gluco-7-rhamnoside. Four of the ginsenosides were identified as notoginsenoside-Fe. ginsenoside-Rd. ginsenoside-Rc and $ginsenoside-Rb_1$ The common aglycone of these ginsenosides was shown to be (20S)-protopanaxadiol. The identification of flavonoids and ginsenosides from the root. stem. leaf. flower and fruit of Dwarf ginseng was detected by Two-Dimensional Thin-Layer Chromatography (2D-TLC) and High Performance Liquid Chromatography (HPLC). The quantitation of flavonoids and ginsenosides from the root. stem. leaf. flower and fruit of Dwarf ginseng and related species such as Korean gineng (Panax ginseng C.A. Meyer) and American ginseng (Panax quinquefolium L.) was analyzed by HPLC only. Three flavonoids (Kaempferol derivatives) labelled compound 1 $(10.8\%)$, compound 3 ($2.8\%$), and compound 4 ($8.4\%)$ were found in the root of Dwarf ginseng but not found in the roots of Korean ginseng and American ginseng. This is the first time that flavonoids have been found and identified in roots of the ginseng family (Araliaceae).

  • PDF

Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy

  • Xu, Xin-fang;Cheng, Xian-long;Lin, Qing-hua;Li, Sha-sha;Jia, Zhe;Han, Ting;Lin, Rui-chao;Wang, Dan;Wei, Feng;Li, Xiang-ri
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.344-350
    • /
    • 2016
  • Background: Mountain-cultivated ginseng (MCG) and cultivated ginseng (CG) both belong to Panax ginseng and have similar ingredients. However, their pharmacological activities are different due to their significantly different growth environments. Methods: An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS)-based approach was developed to distinguish MCG and CG. Multivariate statistical methods, such as principal component analysis and supervised orthogonal partial-least-squares discrimination analysis were used to select the influential components. Results: Under optimized UPLC-QTOF-MS/MS conditions, 40 ginsenosides in both MCG and CG were unambiguously identified and tentatively assigned. The results showed that the characteristic components of CG and MCG included ginsenoside Ra3/isomer, gypenoside XVII, quinquenoside R1, ginsenoside Ra7, notoginsenoside Fe, ginsenoside Ra2, ginsenoside Rs6/Rs7, malonyl ginsenoside Rc, malonyl ginsenoside Rb1, malonyl ginsenoside Rb2, palmitoleic acid, and ethyl linoleate. The malony ginsenosides are abundant in CG, but higher levels of the minor ginsenosides were detected in MCG. Conclusion: This is the first time that the differences between CG and MCG have been observed systematically at the chemical level. Our results suggested that using the identified characteristic components as chemical markers to identify different ginseng products is effective and viable.

Ginsenosides from the fruits of Panax ginseng and their cytotoxic effects on human cancer cell lines (인삼(Panax ginseng) 열매로부터 분리한 ginsenoside의 동정 및 암세포독성 효과)

  • Gwag, Jung Eun;Lee, Yeong-Geun;Hwang-Bo, Jeon;Kim, Hyoung-Geun;Oh, Seon Min;Lee, Dae Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.371-377
    • /
    • 2018
  • The fruits of Panax ginseng were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and $H_2O$ fractions. The repeated $SiO_2$ and octadecyl $SiO_2$ column chromatographies for the EtOAc fraction led to isolation of five ginsenosides. The chemical structures of these compounds were determined as ginsenoside F1 (1), ginsenoside F2 (2), ginsenoside F3 (3), ginsenoside Ia (4), notoginsenoside Fe (5) based on spectroscopic analyses including nuclear magnetic resonance, MS, and infrared. Compounds 2-5 were isolated for the first time from the fruits of P. ginseng in this study. All isolated compounds were evaluated for cytotoxic activities against human cancer cell lines such as HCT-116, SK-OV-3, human cervix adenocarcinoma (HeLa), HepG2, and SK-MEL-5. Among them compounds 2, 4, and 5 showed significant cytotoxicity on cancer cells. Compound 2 exhibited cytotoxicity on SK-MEL-5, HepG2, and HeLa cells with $IC_{50}$ values of 82.8, 86.8, and $78.3{\mu}M$, respectively. Compound 4 showed cytotoxicity on HCT-116, SK-MEL-5, SK-OV-3, HepG2, and HeLa cells with $IC_{50}$ values of 24.5, 25.4, 26.3, 22.0, and $24.9{\mu}M$, respectively. Compound 5 did on SK-MEL-5 cell with $IC_{50}$ value of $81.7{\mu}M$. The cytotoxicity of ginsenoside 2, 4, and 5 isolated from the fruits of Panax ginseng showed strong inhibition effect against on cancer cells, all of which have a glucopyranosyl moiety on C-3.