• Title/Summary/Keyword: nose localization

Search Result 6, Processing Time 0.019 seconds

Structure Analysis of KHP Main & Nose Wheel (KHP Main & Nose Wheel 개발을 위한 구조해석)

  • Kim, Yong-Hwan;Lee, Sea-Wook;Ju, Young-Chan;Chi, Chong-Ho;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.330-335
    • /
    • 2012
  • This study performed the structure analysis for development and localization of main and nose wheel in Korean Helicopter Program(KHP). Structural stability of wheel is evaluated using ANSYS. Considering wheel and tire interface, Stress analysis was conducted by applying pneumatic of tire, static load, radial load and combined load on main and nose wheel. Considering yield strength at which plastic deformation occurs, simulation results suggest the method which increases structure stability after comparing maximum stress and yield strength.

Facial Feature Localization from 3D Face Image using Adjacent Depth Differences (인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2004
  • This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.

Facial Feature Extraction using Nasal Masks from 3D Face Image (코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • This paper proposes a new method for facial feature extraction, and the method could be used to normalize face images for 3D face recognition. 3D images are much less sensitive than intensity images at a source of illumination, so it is possible to recognize people individually. But input face images may have variable poses such as rotating, Panning, and tilting. If these variances ire not considered, incorrect features could be extracted. And then, face recognition system result in bad matching. So it is necessary to normalize an input image in size and orientation. It is general to use geometrical facial features such as nose, eyes, and mouth in face image normalization steps. In particular, nose is the most prominent feature in 3D face image. So this paper describes a nose feature extraction method using 3D nasal masks that are similar to real nasal shape.

Mobile Robot with Artificial Olfactory Function

  • Kim, Jeong-Do;Byun, Hyung-Gi;Hong, Chul-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.223-228
    • /
    • 2001
  • We have been developed an intelligent mobile robot with an artificial olfactory function to recognize odours and to track odour source location. This mobile robot also has ben installed an engine for speech recognition and synthesis and is controlled by wireless communication. An artificial olfactory system based on array of 7 gas sensors has been installed in the mobile robot for odour recognition, and 11 gas sensors also are located in the obttom of robot to track odour sources. 3 optical sensors are also in cluded in the intelligent mobile robot, which is driven by 2 D. C. motors, for clash avoidance in a way of direction toward an odour source. Throughout the experimental trails, it is confirmed that the intelligent mobile robot is capable of not only the odour recognition using artificial neural network algorithm, but also the tracking odour source using the step-by-step approach method. The preliminary results are promising that intelligent mobile robot, which has been developed, is applicable to service robot system for environmental monitoring, localization of odour source, odour tracking of hazardous areas etc.

  • PDF

Localization of the Mental and Infraorbital Foramen with related to the Soft-tissue Landmarks

  • Lee, Yun-Ho;Lee, Myoung-Hwa;Yu, Sun-Kyoung;Jeong, Goo-Soo;Kim, Do-Kyung;Kim, Heung-Joong
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • During maxillofacial surgery, the infraorbital and mental nerves are blocked at eac foramen to induce local anesthesia. This study examined the relative locations of the infraorbital foramen (IOF) and mental foramen (MF) based on softtissue landmarks. Twenty-eight hemifacial cadavers were dissected to expose the IOF and MF. The distances between the bilateral IOFs, the bilateral MFs, the alae of the nose (alares), and the corners of the mouth (cheilions) were measured directly on cadavers by using a digital vernier caliper. The vertical and horizontal distances of the IOF and MF relative to the alare and cheilion were measured indirectly on digital photographs using Adobe Photoshop (Adobe, CA, USA). The distance between the bilateral IOFs ($58.09{\pm}4.04mm$) was longer than the distance between the bilateral MFs ($50.32{\pm}1.93mm$). The distances between the bilateral alares and cheilions were $41.22{\pm}3.44mm$ and $58.43{\pm}6.62mm$, respectively. The IOF was located $12.92{\pm}3.75mm$ superior and $7.88{\pm}2.56mm$ lateral to the alare, and the vertical angle (Angle 1) between these structures was $31.67{\pm}13.36^{\circ}$ superolaterally. The MF was located $21.83{\pm}3.26mm$ inferior and $5.56{\pm}3.37mm$ medial to the cheilion, and the vertical angle (Angle 2) between these structures was $14.05{\pm}10.12^{\circ}$ inferomedially. In conclusion, these results provide more detailed information about the locations of the IOF and MF relative to soft-tissue landmarks.

Image-guided navigation surgery for bilateral choanal atresia with a Tessier number 3 facial cleft in an adult

  • Sung, Ji Yoon;Cho, Kyu-Sup;Bae, Yong Chan;Bae, Seong Hwan
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • The coexistence of craniofacial cleft and bilateral choanal atresia has only been reported in three cases in the literature, and only one of those cases involved a Tessier number 3 facial cleft. It is also rare for bilateral choanal atresia to be found in adulthood, with 10 previous cases reported in the literature. This report presents the case of a 19-year-old woman with a Tessier number 3 facial cleft who was diagnosed with bilateral choanal atresia in adulthood. At first, the diagnosis of bilateral choanal atresia was missed and septoplasty was performed. After septoplasty, the patient's symptoms did not improve, and an endoscopic examination revealed previously unnoticed bilateral choanal atresia. Computed tomography showed left membranous atresia and right bony atresia. The patient underwent an operation for opening and widening of the left choana with an image-guided navigation system (IGNS), which enabled accurate localization of the lesion while ensuring patient safety. Postoperatively, the patient became able to engage in nasal breathing and reported that it was easier for her to breathe, and there were no signs of restenosis at a 26-month follow-up. The patient was successfully treated with an IGNS.