• Title/Summary/Keyword: normalization method

Search Result 640, Processing Time 0.032 seconds

Feature-Vector Normalization for SVM-based Music Genre Classification (SVM에 기반한 음악 장르 분류를 위한 특징벡터 정규화 방법)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), and Spectral Contract/Roll-Off are combined as a set of multiple feature-vectors for the music genre classification system based on the Support Vector Machine (SVM) classifier. In the conventional system, feature vectors for the entire genre classes are normalized for the SVM model training and classification. However, in this paper, selected feature vectors that are compared based on the One-Against-One (OAO) SVM classifier are only used for normalization. Using OSC as a single feature-vector and the multiple feature-vectors, we obtain the genre classification rates of 60.8% and 77.4%, respectively, with the conventional normalization method. Using the proposed normalization method, we obtain the increased classification rates by 8.2% and 3.3% for OSC and the multiple feature-vectors, respectively.

Maternal Uncertainty in Childhood Chronic Illness (만성질환아 어머니의 아동질병으로 인한 불확실성 경험)

  • Park Eun Sook;Martinson M.I.
    • Child Health Nursing Research
    • /
    • v.4 no.2
    • /
    • pp.207-220
    • /
    • 1998
  • The purpose of this study was to build a substantive theory about the experience of the maternal uncertainty in childhood chronic illness. The qualitative research method used was grounded theory. The interviewees were 12 mothers who have cared for a child who had chronic illness. The data were collected through in-depth interviews with audiotape recording done by the investigator over a period of nine months. The data were analyzed simutaneously by a constant comparative method in which new data were continuously coded into categories and properties according to Strauss and Corbin's methodology. The 34 concepts were identified as a result of analyzing the grounded data. Ten categories emerged from the analysis. The categories were lack of clarity, unpredictability, unfamiliarity, negative change, anxiety, devotion normalization and burn-out. Causal conditions included : lack of clarity, unpredictability, unfamiliarity and change ; central phenomena : anxiety, being perplexed ; context. seriousness of illness, support ; intervening condition : belief action/interaction strategies devotion, overprotection ; consequences : normalization, burn-out. These categories were synthesized into the core concept-anxiety. The process of experiencing uncertainty was 1) Entering the world of uncertainty, 2) Struggling in the tunnel of uncertainty, 3) Reconstruction of the situation of uncertainty. Four hypotheses were derived from the analysis : (1) The higher the lack of clarity, unpredictability, unfamiliaity, change, the higher the level of uncertainty (2) The more serious the illness and the less the support, the higher the level of uncertainty. (3) The positive believes will influence the devoted care and normalization of the family life. Through this substantive theory, pediatric nurses can understand the process of experiencing maternal uncertainty in childhood chronic illness. Further research to build substantive theories to explain other uncertainties may contribute to a formal theory of how normalization is achieved in the family with chronically ill child.

  • PDF

Rejection Performance Analysis in Vocabulary Independent Speech Recognition Based on Normalized Confidence Measure (정규화신뢰도 기반 가변어휘 고립단어 인식기의 거절기능 성능 분석)

  • Choi, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.96-100
    • /
    • 2006
  • Kim et al. Proposed Normalized Confidence Measure (NCM) [1-2] and it was successfully used for rejecting mis-recognized words in isolated word recognition. However their experiments were performed on the fixed word speech recognition. In this Paper we apply NCM to the domain of vocabulary independent speech recognition (VISP) and shows the rejection Performance of NCM in VISP. Specialty we Propose vector quantization (VQ) based method for overcoming the problem of unseen triphones. It is because NCM uses the statistics of triphone confidence in the case of triphone-based normalization. According to speech recognition experiments Phone-based normalization method shows better results than RLJC[3] and also triphone-based normalization approach. This results are different with those of Kim et al [1-2]. Concludingly the Phone-based normalization shows robust Performance in VISP domain.

Relative Radiometric Normalization of Hyperion Hyperspectral Images Through Automatic Extraction of Pseudo-Invariant Features for Change Detection (자동 PIF 추출을 통한 Hyperion 초분광영상의 상대 방사정규화 - 변화탐지를 목적으로)

  • Kim, Dae-Sung;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.129-137
    • /
    • 2008
  • This study focuses on the radiometric normalization, which is one of the pre-processing steps to apply the change detection technique fur hyperspectral images. The PIFs which had radiometric consistency under the time interval were automatically extracted by applying spectral angle, and used as sample pixels for linear regression of the radiometric normalization. We also dealt with the problem about the number of PIFs for linear regression with iteratively quantitative methods. The results were assessed in comparison with image regression, histogram matching, and FLAASH. In conclusion, we show that linear regression method with PIFs can carry out the efficient result for radiometric normalization.

Ovarian Cancer Microarray Data Classification System Using Marker Genes Based on Normalization (표준화 기반 표지 유전자를 이용한 난소암 마이크로어레이 데이타 분류 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2032-2037
    • /
    • 2011
  • Marker genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect marker genes that are selected by ranking genes according to statistics after normalizing data with methods that are the most widely used among several normalization methods proposed the while, And it compare and analyze a performance of each of normalization methods with mult-perceptron neural network layer. The Result that apply Multi-Layer perceptron algorithm at Microarray data set including eight of marker gene that are selected using ANOVA method after Lowess normalization represent the highest classification accuracy of 99.32% and the lowest prediction error estimate.

Study on Data Normalization and Representation for Quantitative Analysis of EEG Signals (뇌파 신호의 정량적 분석을 위한 데이터 정규화 및 표현기법 연구)

  • Hwang, Taehun;Kim, Jin Heon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.729-738
    • /
    • 2019
  • Recently, we aim to improve the quality of virtual reality contents based on quantitative analysis results of emotions through combination of emotional recognition field and virtual reality field. Emotions are analyzed based on the participant's vital signs. Much research has been done in terms of signal analysis, but the methodology for quantifying emotions has not been fully discussed. In this paper, we propose a normalization function design and expression method to quantify the emotion between various bio - signals. Use the Brute force algorithm to find the optimal parameters of the normalization function and improve the confidence score of the parameters found using the true and false scores defined in this paper. As a result, it is possible to automate the parameter determination of the bio-signal normalization function depending on the experience, and the emotion can be analyzed quantitatively based on this.

Color Modification Detection Using Normalization and Weighted Sum of Color Components (컬러 성분의 정규화와 가중치 합을 이용한 컬러 조작 검출)

  • Shin, Hyun Jun;Jeon, Jong Ju;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.111-119
    • /
    • 2016
  • Most commercial digital cameras acquire the colors of an image through the color filter array, and interpolate missing pixels of the image. Because of this fact, original pixels and interpolated pixels have different statistical characteristics. If colors of an image are modified, the color filter array pattern that consists of RGB channels is changed. Using this pattern change, a color forgery detection method were presented. The conventional method uses the number of pixels that exceeds the maximum or minimum value of pre-defined block by only exploiting green component. However, this algorithm cannot remove the flat area which is occurred when color is changed. And the conventional method has demerit that cannot detect the forged image with rare green pixels. In this paper, we propose an enhanced color forgery detection algorithm using the normalization and weighted sum of the color components. Our method can reduce the detection error by using all color components and removing flat area. Through simulations, we observe that our proposed method shows better detection performance compared to the conventional method.

A Robust Method for Speech Replay Attack Detection

  • Lin, Lang;Wang, Rangding;Yan, Diqun;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.168-182
    • /
    • 2020
  • Spoofing attacks, especially replay attacks, pose great security challenges to automatic speaker verification (ASV) systems. Current works on replay attacks detection primarily focused on either developing new features or improving classifier performance, ignoring the effects of feature variability, e.g., the channel variability. In this paper, we first establish a mathematical model for replay speech and introduce a method for eliminating the negative interference of the channel. Then a novel feature is proposed to detect the replay attacks. To further boost the detection performance, four post-processing methods using normalization techniques are investigated. We evaluate our proposed method on the ASVspoof 2017 dataset. The experimental results show that our approach outperforms the competing methods in terms of detection accuracy. More interestingly, we find that the proposed normalization strategy could also improve the performance of the existing algorithms.

Tone Mapping Method using Non-linear Dynamic Range Normalization for High Dynamic Range Images (HDR 영상을 위한 비선형 동적영역 정규화를 이용한 톤 매핑 기법)

  • Kim, Beom-Yong;Hwang, Bo-Hyun;Yun, Jong-Ho;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.851-852
    • /
    • 2008
  • In this paper, we propose a tone mapping method using Non-linear Dynamic Range Normalization (NDRN) for High Dynamic Range (HDR) images. HDR images are not suitable for commercial display devices because dynamic range of HDR images do not match with one of Low Dynamic Range (LDR) display devices. To reproduce a tone of HDR images for LDR displays, tone mapping methods have been proposed such as local and global tone mapping. We introduce NDRN to locate mean of HDR images at the center of LDR. NDRN preserves the details for highlight and shadow. By suppressing the significant luminance change in tone mapping, naturalness of original image can be also preserved. The experimental results show that the proposed method preserves details and naturalness of original images.

  • PDF