• Title/Summary/Keyword: normal-strength mortar

Search Result 72, Processing Time 0.023 seconds

The Quality Properties of Mortar for Using Hydraulic Modification Sulfur as Admixture for Cement (개질유황을 시멘트 대체 혼화재로 사용하기 위한 모르타르의 품질특성)

  • Kim, Ki-Hyung;Shin, Do-Chul;Jung, Ho-Jin;Lee, Jae-Nam;Kim, Byiung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • This study ascertained the possibility of use of sulfur abstracted from waste sulfur as a construction material through modification process and manufacturing high efficiency modification sulfur with superior quality on dispersibility and hydrophilic in normal temperature. Mechanic, behavior and chemical durability of mortar with added modification sulfur. The results of the study are as follows. The fluidity of mortar mixed with modification sulfur and compressive strength decreased as ratio of mixing of them increases. Flexural, tensile and bond strength of the mortar are also improved and shrinkage of it increases. Especially chemical durability of the mortar showed excellent resistance with the increase of ratio of mixing. Therefore this research has confirmed the modification sulfur can be used as a addmixture for cement.

  • PDF

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.

The effects of replacement fly ash with diatomite in geopolymer mortar

  • Sinsiri, Theerawat;Phoo-ngernkham, Tanakorn;Sata, Vanchai;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.427-437
    • /
    • 2012
  • This article presents the effect of replacement fly ash (FA) with diatomite (DE) on the properties of geopolymer mortars. DE was used to partially replace FA at the levels of 0, 60, 80 and 100% by weight of binder. Sodium silicate ($Na_2SiO_3$) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture in order to activate the geopolymerization. The NaOH concentrations of 15M, $Na_2SiO_3$/NaOH ratios of 1.5 by weight, and the alkaline liquid/binder (LB) ratios by weight of 0.40, 0.50, 0.60 and 0.70 were used. The curing at temperature of $75^{\circ}C$ for 24 h was used to accelerate the geopolymerization. The flows of all fresh geopolymer mortars were tested. The compressive strengths and the stress-strain characteristics of the mortar at the age of 7 days, and the unit weights were also tested. The results revealed that the use of DE to replace part of FA as source material in making geopolymer mortars resulted in the increased in the workability, and strain capacity of mortar specimens and in the reductions in the unit weights and compressive strengths. The strain capacity of the mortar increased from 0.0028 to 0.0150 with the increase in the DE replacement levels from 0 to 100%. The mixes with 15M NaOH, $Na_2SiO_3$/NaOH of 1.5, LB ratio of 0.50, and using $75^{\circ}C$ curing temperature showed 7 days compressive strengths 22.0-81.0 MPa which are in the range of normal to high strength mortars.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Double Punch Tensile Strength of Cylindrical Mortar with Steel Fibers aligned in Circumferential Direction by Electro-Magnetic Field (전자기장을 이용하여 강섬유를 원주방향으로 배열시킨 원통형 몰탈의 Double Punch 인장강도)

  • Shin, Sun-Chul;Mukharromah, Nur Indah;Moon, Do-Young;Park, Dae-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • In this study, the direction of the steel fibers mixed in the normal mortar and the steel slag mortar was arranged in the circumferential direction by using an electromagnetic field, and a double punch test was performed to evaluate the effect of magnetic filed exposure on tensile strength and on fracture energy. As a result of the experiment, it was confirmed that it is possible to arrange the steel fibers in the circumferential direction. Tensile strength and displacement at failure were also increased according to the arrangement of steel fibers due to exposure to electromagnetic fields. On the other hand, the fracture energy hardly increased. It is considered that there was a limit in resisting crack growth because the area where the arrangement of steel fibers could be adjusted under the electromagnetic field was not deep to center of specimen and the end shape of the steel fibers were straight not hooked. Additional research is needed to address these issues.

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.

Effects of Changes in Resuscitation Temperature and Curing Method on the Compressive Strength of the Large Volume Mortar of Fly Ash after Application of the Resuscitation Material (소생재 도포 후 소생온도 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.139-140
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of resuscitation after the re-application of mortar with much FA replacement on the degree of resuscitation. Results When NaOH was applied to the top of the mortar where 90% of FA was replaced, and maintained for 24 hours, the degree of resuscitation at $40^{\circ}C$ was completely improved. However, when medium curing was carried out, it showed a higher degree of compression than water or lapping curing at 10 MPa in 28 days. The degree of resuscitation on the 28th day was revived from around 10% of the normal level to about 20~30%, and it was analyzed that it was difficult to achieve the OPC reduction by any method.

  • PDF

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Study on Water Reducer Performance for Efficient Fluidity Development and Securing Robustness of Normal Strength Range Concrete (일반강도 콘크리트의 효과적인 유동성 증진 및 품질안정성 확보를 위한 감수제 성능에 대한 연구)

  • Son, Bae-Geun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.429-435
    • /
    • 2017
  • The aim of the research is, for normal strength range concrete mixture, to evaluate the fluidity development and robustness of the mixture depending on various water reducers. Although a usage of water reducer has been essential to make a concrete under the current conditions of worsen aggregate quality, selection of appropriate performance of water reducer is significant. Hence, in this research, regarding the normal strength range mortar, three different performance of water reducers were evaluated in aspects of securing fluidity, and robustness, rheological behaviors. Additionally, for the concrete mixture, the fluidity change was evaluated depending on unit water content for each different water reducer, and the water reducing performance with manufacturing cost was compared and analyzed. By the result of this research, it is expected to provide a case of determining appropriate kind of water reducer and to contribute on conditions of securing sufficient fluidity with stable quality and economical advantage.

Evaluation on the Sulfate Attack Resistance of Cement Mortars with Different Exposure Conditions (노출조건에 따른 시멘트 모르타르의 황산염침식 저항성 평가)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.427-435
    • /
    • 2012
  • In order to evaluate the effects of exposure conditions on the resistance to sulfate attack of normal and blended cement mortars, several mechanical characteristics of the mortars such as expansion, strength and bulk density were regularly monitored for 52 cycles under sodium sulfate attack. The mortar specimens were exposed to 3 different types of exposure conditions; 1) continuous full immersion(Exposure A), continuous half-immersion(Exposure B) and cyclic wetting-drying(Exposure C). Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens subjected to Exposure B, showing the wide cracks in the portions where attacking solution is adjacent to air. Additionally, the beneficial effect of ground granulated blast-furnace slag and silica fume was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability and densified structure. Thus, it is suggested that when concrete made with normal cement is exposed to sulfate environment, proper considerations on the exposure conditions should be taken.