• Title/Summary/Keyword: normal strut

Search Result 14, Processing Time 0.023 seconds

Numerical Study on the Behavior of Corner Areas in Excavation Site (굴착 모서리부 거동에 대한 수치해석 연구)

  • Seok, Jeong-Woo;Hwang, Dae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.757-764
    • /
    • 2004
  • This paper deals with the numerical study on the displacement behavior of corner areas in an excavation site. Several corner areas always exist in the excavation site. The corner area has two free surfaces, which may become serious weak point from the viewpoint of structural stability. If the structural reinforcements are not applied adequately in corner areas, significant displacement of retaining wall could occur. What is worse, the collapse of retaining system rarely happens. In this paper, 3D numerical analyses were performed to investigate the effect of the arrangement of diagonal and normal strut. From the analysis results, it is found that the spacing between diagonal strut and normal strut should be less than 4m to avoid excessive displacement due to excavation.

  • PDF

Strength Evaluation of Reinforced Concrete Corbels using Nonlinear Strut-Tie Model Approach (비선형 스트럿-타이 모델 방법에 의한 철근콘크리트 코벨의 강도 평가)

  • 윤영묵;신용목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.391-396
    • /
    • 2003
  • The concrete corbels consist of various failure mechanisms such as the yielding of the tension reinforcement, the crushing or splitting from compression concrete struts, and localized bearing or shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, the ACI 318-02, the softened strut-tie model approach, and the nonlinear strut-tie model approach are applied to ultimate strength analysis of normal strength concrete corbels tested to failure. From the result of the analysis, an effective analysis and design method of normal strength concrete corbels is suggested.

  • PDF

Strength Prediction of Corbels Using Strut-and-Tie Model Analysis

  • Kassem, Wael
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • A strut-and-tie based method intended for determining the load-carrying capacity of reinforced concrete (RC) corbels is presented in this paper. In addition to the normal strut-and-tie force equilibrium requirements, the proposed model is based on secant stiffness formulation, incorporating strain compatibility and constitutive laws of cracked RC. The proposed method evaluates the load-carrying capacity as limited by the failure modes associated with nodal crushing, yielding of the longitudinal principal reinforcement, as well as crushing or splitting of the diagonal strut. Load-carrying capacity predictions obtained from the proposed analysis method are in a better agreement with corbel test results of a comprehensive database, comprising 455 test results, compiled from the available literature, than other existing models for corbels. This method is illustrated to provide more accurate estimates of behaviour and capacity than the shear-friction based approach implemented by the ACI 318-11, the strut-and-tie provisions in different codes (American, Australian, Canadian, Eurocode and New Zealand).

A Case Study on the Application and History of Stuts System using the Underground Excavation Construction (지하굴착공사에 적용되는 버팀 시스템의 변화와 적용 사례연구)

  • Lee, Jung-Jae;Jung, Kyoung-Sik;Roh, Bae-Young;Kim, Hong-Taek
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.54-65
    • /
    • 2006
  • Since timbering of a cut in association with underground excavtion work is introduced to domestic, in spite of limitation of special quality in this method, time change, variety of construction, Strut Method is still considered with general methods. Experts have developed methods which is improved in limitation of special quality by continuous studies of normal strut method in basic, and it has been applied to construction site Consequently, this study introduced improved Strut Method to help experts when they select resonable methods with regard to construction site, conditions

  • PDF

Design in shear of reinforced concrete short columns

  • Moretti, M.L.;Tassios, T.P.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.265-283
    • /
    • 2013
  • This research was prompted by the paucity of specific code provisions regarding the design of short columns for shear. The purpose of this paper was to investigate whether the use of the normal shear design procedure of various codes may or may not be applied to reliably calculate the shear strength of short columns. Provisions of the codes American ACI 318M-08, Canadian CSA A23.3-04, Japanese AIJ Guidelines, New Zealand NZS 3101, European EN 1998 (EC8) parts 1 and 3, combined with EN 1992-1-1 (EC2), and draft fib Model Code 2010, as well as a strut-and-tie model are applied on short columns tested under cyclic loading that failed in shear. Actual shear resistances are compared to predictions, and the resulting shortcomings of the codes are identified. EN1998-3 appears to be the only code among those considered that may be reliably applied to estimate the shear resistance of short columns. Further, the proposed strut-and tie model can be a useful tool for the detailed design and assessment of short columns.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

A Study on Shear Strength Prediction for High-Strength Reinforced Concrete Deep Beams Using Strut-and-Tie Model (스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • 이우진;서수연;윤승조;김성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.918-923
    • /
    • 2003
  • Reinforced concrete deep beams are commonly used in many structural applications, including transfer girders, pile caps, foundation walls, and offshore structures. The existing design methods were developed and calibrated using normal strength concrete test results, and their applicability th HSC deep beams must be assessed. For the shear strength prediction of high-strength concrete(HSC) deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the refined model, the formulas the ACI 318-02 Appendix A STM, and Eq. of ACI 318-99 11.8 are compared with the collected experimental data of 74 HSC deep beams with compressive strength in the range of 49-78MPa . It is shown the shear strength of deep beam calculated by those equations are conservative on comparing test results. The comparison shows that the performance of the proposed SSTM is better than the ACI Code approach for all the parameters under comparison. The parameters reviewed include concrete strength, the shear span-depth ratio, and the ratio of horizontal and vertical reinforcement. The proposed SSTM gave a mean predicted to experimental ratio of 0.99, 32 percent higher than ACI 318-02 Code, however with the low coefficient variation.

  • PDF

Super-Cavitating Flow Problems about Two-Dimensional Symmetric Strut (2차원 대칭 스트럿 주위의 초월 공동 유동 문제의 해석)

  • Y.G.,Kim;C.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.15-26
    • /
    • 1990
  • This paper describes a potential-baoed panel method formulated for the analysis cf a supercavitating two-dimensional symmetri strut. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type, With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lifting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged.

  • PDF

Shear Behavior and Performance of Deep Beams Made with Self-Compacting Concrete

  • Choi, Y.W.;Lee, H.K.;Chu, S.B.;Cheong, S.H.;Jung, W.Y.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2012
  • An experimental study was carried out to evaluate fresh properties of a moderately high-strength (high-flowing) self-compacting concrete (SCC) and to investigate shear behavior and performance of deep beams made with SCC. Fresh and hardened properties of normal concrete (NC) and SCC were evaluated. The workability and compacting ability were observed based on casting time and number of surface cavities, respectively. Four-point loading tests on four deep beams (two made with SCC and two with NC) were then conducted to investigate their shear behavior and performance. Shear behavior and performance of beams having two different web reinforcements in shear were systematically investigated in terms of crack pattern, failure mode, and load-deflection response. It was found from the tests that the SCC specimen having a normal shear reinforcement condition exhibited a slightly higher load carrying capacity than the corresponding NC specimen, while the SCC specimen having congested shear reinforcement condition showed a similar load carrying capacity to the corresponding NC specimen. In addition, a comparative study between the present experimental results and theoretical results in accordance with ACI 318 (Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary-ACI 318R-89, 1999), Hsu-Mau's explicit method (Hsu, Cem Concr Compos 20:419-435, 1998; Mau and Hsu, Struct J Am Concr Inst 86:516-523, 1989) and strut-and-tie model suggested by Uribe and Alcocer (2002) based on ACI 318 Appendix A (2008) was carried out to assess the applicability of the aforementioned methods to predict the shear strength of SCC specimens.

Numerical Analysis of Lifting Potential Flow around a Three-Dimensional Body moving beneath the Free Surface (자유표면하에서 전진하는 3차원 물체 주위의 양력 흐름 수치 해석)

  • B.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.21-32
    • /
    • 1992
  • Numerical solutions are presented for solving the free surface flow created by a three-dimensional body moving beneath the free surface with constant velocity at an angle of attack. The solution is obtained using a panel method based on the perturbation potential, which employs Havelock sources and normal dipoles distributed on the body surface and Havelock normal dipoles in the wake downstream of the trailing edge. A pressure Kutta condition with an iterative solution procedure is implemented to satisfy equal pressure condition on the upper and lower surfaces at the trailing edge. Numerical calculation examples in the present paper include an ellipsoid at zero angle of attack, a rectangular planform wing at a small angle of attack in the limit of zero Froude number and then free surface flows and hydrodynamic forces acting on the submerged spheroid and parabolic strut are calculated. Discussions are made about the validity of the present method.

  • PDF