• 제목/요약/키워드: normal spring constant

검색결과 18건 처리시간 0.03초

원자 현미경용 콜로이드 탐침 수직 스프링 상수 측정 (Measurement of Normal Spring Constant of Colloidal Probes for Atomic Force Microscope)

  • 김대현;김민석;한준희;안효석
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.212-217
    • /
    • 2012
  • A modified thermal noise method was proposed to measure the normal spring constants of the colloidal probes for an atomic force microscope. We used commercial tipless cantilevers (length 150, width 30, nominal k 7.4 N/m) and borosilicate spheres with a diameter of 20 to fabricate colloidal probes. The inverse optical lever sensitivity of both the tipless cantilever and colloidal probes were used to measure the normal spring constant of the colloidal probes. We confirmed the accuracy and usefulness of our method by comparing the measurement results with those obtained using the nanoforce calibrator (NFC), which reportedly has an uncertainty of 1.00%. The modified thermal method showed a good agreement (~10% difference) with the NFC, allowing us to conclude that the modified thermal method could be employed for the effective measurement of the normal spring constants of colloidal probes.

나노스케일 마찰거동에서 스프링 상수가 마찰에 미치는 영향에 대한 분자동역학 연구 (Study on Influence of Spring Constant on Frictional Behavior at the Nanoscale through Molecular Dynamics Simulation)

  • 강원빈;김현준
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.77-80
    • /
    • 2021
  • In this study, we investigated the effect of the spring constant on frictional behavior at a nanoscale through molecular dynamics simulation. A small cube-shaped tip was modeled and placed on a flat substrate. We did not apply the normal force to the tip but applied adhesive force between the tip and the substrate. The tip was horizontally pulled by a virtual spring to generate relative motion against the substrate. The controlled spring constant of the virtual spring ranged from 0.3 to 70 N/m to reveal its effect on frictional behavior. During the sliding simulation, we monitored the frictional force and the position of the tip. As the spring constant decreased from 70 to 0.3 N/m, the frictional force increased from 0.1 to 0.25 nN. A logarithmic relationship between the frictional force and spring constant was established. The stick-slip instability and potential energy slope increased with a decreasing spring constant. Based on the results, an increase in the spring constant reduces the probability of trapping in the local minima on the potential energy surface. Thus, the energy loss of escaping the potential well is minimized as the spring constant increases.

Graphic 방법을 이용한 암반의 경계조건에 따른 절리면 전단거동 예측 (Prediction for Shear Behavior of the Rock Joints with Boundary Conditions using the Graphic Method)

  • 김용준;이정학;송범;염형진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.466-471
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures, such as the cut slopes and the tunnels, are largely controlled by the conditions of the rock joint as well as its boundary conditions. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus is developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. It is possible that the behavior under the constant normal stiffness condition can be predicted by the normalized graphic method with results obtained from the tests in the constant normal stress condition.

  • PDF

이산요소법을 이용한 코크스 분화 거동 해석 (Analysis for Cokes Fracture Behavior using Discrete Element Method)

  • 유수현;박준영
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

암반의 경계조건을 고려한 절리면 직접전단시험기 개발 (Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints)

  • 이영휘;김용준
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.147-157
    • /
    • 2003
  • 사면이나 터널과 같은 암반 구조물의 안정성에 영향을 미치는 절리면은 크게 절리면의 상태(돌기 강도, 충전재, 돌기 경사)와 주위 암반에 의해 구속되는 경계조건에 따라 지배된다. 본 연구에서는 암반 구조물에 작용하는 경계조건 과 절리상태에 따른 전단특성을 규명하기 위하여 PID 알고리즘에 의해 서보제어가 되는 절리면 전단시험 장비를 개발하였다. 그리고 돌기 경사가 일정한 톱니형 형상의 절리면에 대하여 일련의 실험을 수행하여 시험장비의 제어성능을 확인하고 사면이나 터널과 같이 경계조건이 다른 암반구조물에서는 전단강도 평가기법을 달리하여야 함을 알 수 있었다.

기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정 (Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever)

  • 제영완;정구현
    • Tribology and Lubricants
    • /
    • 제29권3호
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.

터보엔진 구성품용 스프링의 저장 신뢰성 평가 (Storage Reliability Assessment of Springs for Turbo Engine Components)

  • 장무성;이충성;박종원;김유일;김선제
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.42-49
    • /
    • 2019
  • 본 연구에서는 가속열화시험을 이용하여 터보엔진 구성품용 스프링의 저장 신뢰도를 예측하는 방법을 제시한다. 스프링의 신뢰성 평가 절차를 먼저 수립한 후, 스프링의 성능열화특성은 스프링 상수로 선정한다. 또한 스프링 상수를 노화시키는 가속 스트레스 인자는 온도로 결정한다. 본 연구에서는 터보엔진에 사용되는 스프링에 대해서 3가지 온도 조건에서 시험을 실시하며, 각각의 온도 조건에서 스프링의 노화 상태를 확인하기 위해 주기적으로 스프링 상수를 측정한다. 스프링의 고장시간은 열화모델을 이용하여 예측하며, 최종적으로 고장시간과 가속모델을 이용하여 사용조건에서 스프링의 저장 수명을 예측한다.

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

대형 초정밀 스테이지용 복합 아이솔레이터 개발 (Development of the Hybrid Vibration Isolator for Large Superprecision Stage)

  • 김원겸;정순철;장승환;이재응;신동수;이재정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1404-1408
    • /
    • 2006
  • In this paper, a hybrid-type vibration isolator which has air chamber(spring) and viscous damper in series is developed. The developed vibration isolator is designed to perform 3 following functions : spring function for normal operating conditions, damping function to reduce an impact for sudden move of upper beam, and finally leveling function. Based on the given natural frequency and damping factor, the design procedure is proposed. The performance of the developed isolator is tested by measuring stiffness and damping.

  • PDF

나노 힘 측정 및 표준 (Nano Force Metrology and Standards)

  • 김민석;박연규;최재혁;김종호;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF