• Title/Summary/Keyword: normal load

Search Result 1,369, Processing Time 0.027 seconds

Development of Stress, Load and Displacement Controlled Direct Shear Apparatus for Jointed Rock (응력, 하중, 변위제어 방식의 암석 절리면 전단시험기의 개발)

  • 김대영;천병식;서영호;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.471-477
    • /
    • 1999
  • A new stress, load and displacement controlled direct shear apparatus has recently been developed at the Hyundai Institute of Construction Technology This direct shear apparatus is capable of testing of rock joint under constant normal stiffness, constant normal stress or constant normal load boundary conditions. This paper describes this direct shear apparatus and illustrates results of shear tests at constant normal stress condition, constant normal load condition and constant normal stiffness condition with dental stones which have a same joint roughness and unconfined compressive strength.

  • PDF

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

Attention and Working Memory Task-Load Dependent Activation Increase with Deactivation Decrease after Caffeine Ingestion

  • Peng, Wei;Zhang, Jian;Chang, Da;Shen, Zhuo-Wen;Shang, Yuanqi;Song, Donghui;Ge, Qiu;Weng, Xuchu;Wang, Ze
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.199-209
    • /
    • 2017
  • Purpose: Caffeine is the most widely consumed psychostimulant. It is often adopted as a tool to modulate brain activations in fMRI studies. However, its pharmaceutical effect on task-induced deactivation has not been fully examined in fMRI. Therefore, the purpose of this study was to examine the effect of caffeine on both activation and deactivation under sustained attention. Materials and Methods: Task fMRI was acquired from 26 caffeine naive healthy volunteers before and after taking caffeine pill (200 mg). Results: Statistical analysis showed an increase in cognition-load dependent task activation but a decrease in load dependent de-activation after caffeine ingestion. Increase of attention and memory task activation and its load-dependence suggest a beneficial effect of caffeine on the brain even though it has no overt behavior improvement. The reduction of deactivation by caffeine and its load-dependence indicate reduced facilitation from task-negative networks. Conclusion: Caffeine affects brain activity in a load-dependent manner accompanied by a disassociation between task-positive network and task-negative network.

Prediction of Design Ice Load on Icebreaking Vessels under Normal Operating Conditions (정상운항 상태에서 쇄빙선박에 작용하는 설계 빙하중 추정)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.603-610
    • /
    • 2009
  • Ice load is one of the important design parameters for the construction of icebreaking vessels. In this paper, the design ice load prediction for the icebreaking vessels under normal operating condition in ice-covered sea is discussed. The ice loads under normal operating condition are expected from sea trials in moderate ice conditions. In this sense the extreme ice loads during heavy ramming or accidental collision are not considered. Current study describes the global ice load on the hull of the icebreaking vessels. Available ice load data from full-scale sea trials are collected and analyzed according to various ship-ice interaction parameters including displacement, stem angle, speed of a ship and flexural strength and thickness of sea ice. The ice load prediction formula is compared with the collected full-scale sea trials data and it shows a good agreement.

Evaluation of the Sliding Frictional Characteristics at the Different Loading Mechanisms and Normal Stiffness (마찰시험기의 하중부과 방법과 수직방향 강성 변화에 따른 미끄럼 마찰특성 평가)

  • 윤의성;공호성;권오관;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.55-64
    • /
    • 1996
  • Frictional characteristics with the change of loading method and normal stiffness at dry sliding surfaces were experimentally and theoretically evaluated in this study. For the study, a ball-on-disk typed test rig was built and implemented, which allowed a proper selection of loading mechanism and normal stiffness of the test rig. Loading method were varied from dead weight to pneumatic cylinder and spring loading, and the normal stiffness was varied by a spring of different stiffness. Test results showed that frictional characteristics at various loading methods were different even though the operating variables were the same. Discrepancy in the frictional characteristics, such as coefficient of friction and fluctuation in the normal load, were explained by the change in dynamic parameters of the test rigs. Results also showed that coefficient of friction, which defines as a ratio of frictional force divided a normal load, could be differently evaluated in the calculation when fluctuation in the normal load was significant.

A study of diamond wire rock cutting process analysis by FEM

  • Kabir, Mohammed Ruhul;Sagong, Myung;Ahn, Sung-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2015
  • In this paper diamond wire cutting method has been proposed to cut the rock in the tunnel face. Diamond wire saw method could cut the rock from tunnel face with very minor vibration and noise. In this study rock cutting process has been simulated with FEM method by using LS-DYNA explicit non-linear finite element code. Normal load act as an prime factor when cutting the rock surface. For observing the effect of normal load on bead, several experiments has been conducted by varying normal loads on the bead. From each experiment, cutting rate has been calculated to compare the cutting rate with different load conditions. By increasing the normal load on bead, cutting rate increases drastically.

Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • In this paper, the effect of normal load on the failure mechanism of echelon joint has been studied using PFC2D. In the first step, calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests. Then, six different models consisting various echelon joint were prepared and tested under two low and high normal loads. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. The simulations demonstrated that failure patterns were mostly influenced by normal loading, while the shear strength was linked to failure mechanism. When ligament angle is less than $90^{\circ}$, the stable crack growth length is increased by increasing the normal loading. In this condition, fish eyes failure pattern occur in rock bridge. With higher ligament angles, the rock bridge was broken under high normal loading. Applying higher normal loading increases the number of fracture sets while dilation angle and mean orientations of fracture sets with respect to ligament direction will be decreased.

A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox (풍력발전기 증속기에 전달되는 풍하중 변동특성 연구)

  • Kim, Jung-Su;Lee, Hyoung-Woo;Park, No-Gill;Lee, Dong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, normal wind load and blast wind load are modeled mathematical. And the periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train. In normal wind load case, excitation frequency is 3X (X : Rotor speed). When the wind direction is $+22.5^{\circ}$, the horizontal axis of bending moment occur the 50% of main torque. This result leads to edge contact of gear teeth by shaft elastic deformation. In blast wind load case, excitation frequency are 3X,6X,9X. Additional, in the (+) direction of wind load, relative harmonic percentage is increase.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.