The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.
For investigating whether the MARSSIM nonparametric test has sufficient statistical power when a site has a specific contamination distribution before conducting a final status survey (FSS), a novel approach was proposed to predict the release probability of the site. Five distributions were assumed: lognormal distribution, normal distribution, maximum extreme value distribution, minimum extreme value distribution, and uniform distribution. Hypothetical radioactivity populations were generated for each distribution, and Sign tests were performed to predict the release probabilities after extracting samples using Monte Carlo simulations. The designed Type I error (0.01, 0.05, and 0.1) was always satisfied for all distributions, while the designed Type II error (0.01, 0.05, and 0.1) was not always met for the uniform, maximum extreme value, and lognormal distributions. Through detailed analyses for lognormal and normal distributions which are often found for contaminants in actual environmental or soil samples, it was found that a greater statistical power was obtained from survey units with normal distribution than with lognormal distribution. This study is expected to contribute to achieving the designed decision error when the contamination distribution of a survey unit is identified, by predicting whether the survey unit passes the statistical test before undertaking the FSS according to MARSSIM.
When driving the expected loss generated by the quality deviation, Taguchi(1991b) assumed that an objective characteristic has the uniform distribution in its control limit. But it is reasonable to assume that an objective characteristic has the normal distribution than the uniform distribution. Since the triangular distribution is similar to the normal distribution and easy to handle as well, in this article, we first find the optimum measurement interval and the optimum control limit under the triangular distribution. Under the normal assumption, the modified method is compared to Taguchi's. Secondly we find the numerical value solution of the optimum measurement interval and the optimum control limit under the normal distribution.
The purpose of this paper is to investigate the effects of calibration rounds on the statistical distribution of the muzzle velocity in acceptance test of propelling charge. It is shown that the normal distribution fits best among statistical distributions from goodness-of fit test. The 3p-Weibull distribution is also acceptable because the shape of the probability density function curve is similar to that of normal distribution and it also has near zero skewness value. Muzzle velocities of test rounds uncompensated by calibration rounds showed high variation and had comparatively higher skewness. Because the skewness of normal distribution is defined to be zero, calibration rounds make the normality of data higher.
Journal of Electrical Engineering and information Science
/
제1권2호
/
pp.52-57
/
1996
Detection of arcing high impedance faults has been a perplexing in the power distribution protection. Transient analysis of distribution disturbances for fault discrimination from other normal events is important for a secure protection of the power system. A simple parameter of wave form distortion quantification is used to analyze the behaviors of arcing faults and normal distribution disturbances. Theoretical perspectives of the transients were studied and actual disturbances were examined. From this investigation, a discrimination guideline based on the revised crest factor is developed. The discrimination method has a high potential to enhance the reliability and security for the distribution system protection.
Online or sequential learning is one of the most basic and powerful method to train neuron network, and it has been widely used in disease detection, weather prediction and other realistic classification problem. At present, there are many algorithms in this area, such as MRAN, GAP-RBFN, OS-ELM, SVM and SMC-RBF. Among them, SMC-RBF has the best performance; it has less number of hidden neurons, and best efficiency. However, all the existing algorithms use signal normal distribution as kernel function, which means the output of the kernel function is same at the different direction. In this paper, we use multi-variable normal distribution as kernel function, and derive EKF learning formulas for multi-variable normal distribution kernel function. From the result of the experience, we can deduct that the proposed method has better efficiency performance, and not sensitive to the data sequence.
The well-known standard normal distribution has been used within the limit of standard variable value of u=3.59. However, the probability values above the limit are not given in the literature. In this study, a probability computation program for standard normal distribution to u=5.99 with the proportional normal distribution a, pp.oximation suggested by Abramowitz and Stegun, Hastings is developed. The new standard normal distribution table developed by the program is presented and will be of help to estimate of probability values for testing and estimation of process mean value, lot acceptable probability, defective percentage of PPM unit of an out-of specification limit, process capability, test power of control charts, probability and statistics.
It is an important and urgent issue to improve process capability in quality control. Process capability refers to the uniformity of the process. The variability in the process is a measure of the uniformity of output. A simple, quantitative way to express process capability, the degree of variability from target in specification is defined by process capability index(PCI). Almost process capability indices are defined under normal distribution. However, these indices can not be applied to the process of non-normal distribution including reliability. We investigate current research on the process of non-normal distribution, and advanced method and technology for developing more reliable and efficient PCI. Finally we suggest the perspective for future study.
The variable sampling inspection scheme with screening for the purpose of assuring the upper limit of maximum expected surplus loss after inspection has been proposed. In this inspection scheme, it has been assumed that a product lot consists of products manufactured through a single production line and lot quality characteristics follow a normal distribution. In the previous literature with respect to inspection schemes, it has been commonly assumed that lot quality characteristics obey a single normal distribution under the condition that all products are manufactured in the same condition. On the other hand, the production line is designed in order that the workload of respective processes becomes uniform from the viewpoint of line balancing. One of the solutions for the bottleneck process is to arrange the workshops in parallel. The lot quality characteristics from such a production line with the process consisting of some parallel workshops might not follow strictly the single normal distribution. Therefore, we expand an applicable scope of the above mentioned variable sampling inspection scheme with screening in this article. Concretely, we consider the variable sampling inspection with screening for the purpose of assuring the upper limit of average outgoing surplus quality loss in the production lots when the lot quality follows the mixed normal distribution.
We propose a method for estimating coefficients of AR (autoregressive) model which named MLPAR (Maximum Likelihood of Pearson system for Auto-Regressive model). In the present method for estimating coefficients of AR model, there is an assumption that residual or error term of the model follows the normal distribution. In common cases, we can observe that the error of AR model does not follow the normal distribution. So the normal assumption will cause decreasing prediction accuracy of AR model. In the paper, we propose the MLPAR which does not assume the normal distribution of error term. The MLPAR estimates coefficients of auto-regressive model and distribution moments of residual by using pearson distribution system and maximum likelihood estimation. Comparing proposed method to auto-regressive model, results are shown to verify improved performance of the MLPAR in terms of prediction accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.