• Title/Summary/Keyword: nonstationary model

Search Result 142, Processing Time 0.031 seconds

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

A STUDY ON NONSTATIONARY RANDOM VIBRATION OF A VEHICLE IN TIME AND FREQUENCY DOMAINS

  • Zhang, L.J.;Lee, C.M.;Wang, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.101-109
    • /
    • 2002
  • A time domain method for solving nonstationary random vibration caused by vehicle acceleration is first proposed in which a time changing model is established for representing nonstationary excitation of a rough road. Furthermore a novel frequency domain method called the transient power spectral density with spatial frequency (TPSD) is presented to obtain a response of vehicle system in frequency domain. This method has been proved to be valid by comparing numerical results with the exact solution.

A development of nonstationary rainfall frequency analysis model based on mixture distribution (혼합분포 기반 비정상성 강우 빈도해석 기법 개발)

  • Choi, Hong-Geun;Kwon, Hyun-Han;Park, Moon-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.895-904
    • /
    • 2019
  • It has been well recognized that extreme rainfall process often features a nonstationary behavior, which may not be effectively modeled within a stationary frequency modeling framework. Moreover, extreme rainfall events are often described by a two (or more)-component mixture distribution which can be attributed to the distinct rainfall patterns associated with summer monsoons and tropical cyclones. In this perspective, this study explores a Mixture Distribution based Nonstationary Frequency (MDNF) model in a changing rainfall patterns within a Bayesian framework. Subsequently, the MDNF model can effectively account for the time-varying moments (e.g. location parameter) of the Gumbel distribution in a two (or more)-component mixture distribution. The performance of the MDNF model was evaluated by various statistical measures, compared with frequency model based on both stationary and nonstationary mixture distributions. A comparison of the results highlighted that the MDNF model substantially improved the overall performance, confirming the assumption that the extreme rainfall patterns might have a distinct nonstationarity.

An Hourly Extreme Data Estimation Method Developed Using Nonstationary Bayesian Beta Distribution (비정상성 Bayesian Beta 분포를 이용한 시 단위 극치자료 추정기법 개발)

  • Kim, Yong-Tak;Kim, Jin-Young;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.256-272
    • /
    • 2017
  • Extreme rainfall has become more frequent over the Korean peninsula in recent years, causing serious damages. In a changing climate, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to overestimate (or underestimate) the design rainfalls. A main objective of this study is to develop a stochastic disaggregation method of seasonal rainfall to hourly extreme rainfall, and offer a way to derive the nonstationary IDF curves. In this study, we propose a novel approach based on a Four-Parameter Beta (4P-beta) distribution to estimate the nonstationary IDF curves conditioned on the observed (or simulated) seasonal rainfall, which becomes the time-varying upper bound of the 4P beta distribution. Moreover, this study employed a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters. The proposed model showed a comparable design rainfall to that of GEV distribution under the stationary assumption. As a nonstationary rainfall frequency model, the proposed model can effectively translate the seasonal variation into the sub-daily extreme rainfall.

Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line

  • Yang, Xiongjun;Lei, Ying;Liu, Lijun;Huang, Jinshan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.425-434
    • /
    • 2020
  • Practical non-synoptic fluctuating wind often exhibits nonstationary features and should be modeled as nonstationary random processes. Generally, the coherence function of the fluctuating wind field has time-varying characteristics. Some studies have shown that there is a big difference between the fluctuating wind field of the coherent function model with and without time variability. Therefore, it is of significance to simulate nonstationary fluctuating wind field with time-varying coherent function. However, current studies on the numerical simulation of nonstationary fluctuating wind field with time-varying coherence are very limited, and the proposed approaches are usually based on the traditional spectral representation method with low simulation efficiency. Especially, for the simulation of multi-variable wind field of large span structures such as transmission tower-line, not only the simulation is inefficient but also the matrix decomposition may have singularity problem. In this paper, it is proposed to conduct the numerical simulation of nonstationary fluctuating wind field in one-spatial dimension with time-varying coherence based on the wavenumber-frequency spectrum. The simulated multivariable nonstationary wind field with time-varying coherence is transformed into one-dimensional nonstationary random waves in the simulated spatial domain, and the simulation by wavenumber frequency spectrum is derived. So, the proposed simulation method can avoid the complicated Cholesky decomposition. Then, the proper orthogonal decomposition is employed to decompose the time-space dependent evolutionary power spectral density and the Fourier transform of time-varying coherent function, simultaneously, so that the two-dimensional Fast Fourier transform can be applied to further improve the simulation efficiency. Finally, the proposed method is applied to simulate the longitudinal nonstationary fluctuating wind velocity field along the transmission line to illustrate its performances.

Adaptive Noise Removal Based on Nonstationary Correlation (영상의 비정적 상관관계에 근거한 적응적 잡음제거 알고리듬)

  • 박성철;김창원;강문기
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.278-287
    • /
    • 2003
  • Noise in an image degrades image quality and deteriorates coding efficiency. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other in order not to Increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean-square-error filter. Justification for the proposed image model is presented and effectiveness of the proposed algorithm is demonstrated experimentally.

Some model misspecification problems for time series: A Monte Carlo investigation

  • Dong-Bin Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.55-67
    • /
    • 1998
  • Recent work by Shin and Sarkar (1996) examines model misspecification problems for nonstationary time series. Shin and Sarkar introduce a general regression model with integrated errors and one system of integrated regressors and discuss the limiting distributions of the OLS estimators and the usual OLS statistics such as $\hat{\sigma^2}$t, DW and $R^2$. We analyze three different model misspecification problems through a Monte Carlo study and investigate each model misspecification problem. Our Monte Carlo experiments show that DW and $R^2$ can be in general used as diagnostic tools to detect spurious regression, misspecification of nonstationary autoregressive and polynomial regression models.

  • PDF

Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile (비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정)

  • Jung, Tae-Ho;Kim, Hanbeen;Kim, Hyeonsik;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.165-174
    • /
    • 2019
  • As a nonstationarity is observed in hydrological data, various studies on nonstationary frequency analysis for hydraulic structure design have been actively conducted. Although the inherent diversity in the atmosphere-ocean system is known to be related to the nonstationary phenomena, a nonstationary frequency analysis is generally performed based on the linear trend. In this study, a nonstationary frequency analysis was performed using climate indices as covariates to consider the climate variability and the long-term trend of the extreme rainfall. For 11 weather stations where the trend was detected, the long-term trend within the annual maximum rainfall data was extracted using the ensemble empirical mode decomposition. Then the correlation between the extracted data and various climate indices was analyzed. As a result, autumn-averaged AMM, autumn-averaged AMO, and summer-averaged NINO4 in the previous year significantly influenced the long-term trend of the annual maximum rainfall data at almost all stations. The selected seasonal climate indices were applied to the generalized extreme value (GEV) model and the best model was selected using the AIC. Using the model diagnosis for the selected model and the nonstationary GEV model with the linear trend, we identified that the selected model could compensate the underestimation of the rainfall quantiles.

An Empirical Study on Explosive Volatility Test with Possibly Nonstationary GARCH(1, 1) Models

  • Lee, Sangyeol;Noh, Jungsik
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.207-215
    • /
    • 2013
  • In this paper, we implement an empirical study to test whether the time series of daily returns in stock and Won/USD exchange markets is strictly stationary or explosive. The results indicate that only a few series show nonstationary volatility when dramatic events erupted; in addition, this nonstationary behavior occurs more often in the Won/USD exchange market than in the stock market.

Empirical Mode Decomposition (EMD) and Nonstationary Oscillation Resampling (NSOR): I. their background and model description

  • Lee, Tae-Sam;Ouarda, TahaB.M.J.;Kim, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.90-90
    • /
    • 2011
  • Long-term nonstationary oscillations (NSOs) are commonly observed in hydrological and climatological data series such as low-frequency climate oscillation indices and precipitation dataset. In this work, we present a stochastic model that captures NSOs within a given variable. The model employs a data-adaptive decomposition method named empirical mode decomposition (EMD). Irregular oscillatory processes in a given variable can be extracted into a finite number of intrinsic mode functions with the EMD approach. A unique data-adaptive algorithm is proposed in the present paper in order to study the future evolution of the NSO components extracted from EMD.

  • PDF