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Abstract
In this paper, we implement an empirical study to test whether the time series of daily returns in stock and

Won/USD exchange markets is strictly stationary or explosive. The results indicate that only a few series show
nonstationary volatility when dramatic events erupted; in addition, this nonstationary behavior occurs more often
in the Won/USD exchange market than in the stock market.
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1. Introduction

Time varying volatility is an important feature of financial time series. To capture this phenomenon,
Engle (1982) introduced the idea of conditional heteroscedasticity. Since then, generalized autore-
gressive conditional heteroscedasticity(GARCH) models have drawn significant attention from re-
searchers. The stationarity is a basic assumption for GARCH models; however, the stationarity test
has not been intensively studied yet: see Francq and Zakoı̈an (2012). Some articles consider weakly
stationary GARCH models (Bollerslev, 1986; Weiss, 1986; Pantula, 1988); however, in practice, the
parameter estimation result often appears to violate the weak stationarity condition since the underly-
ing process turns out to be integrated GARCH(IGARCH). It is well known that the IGARCH process
is not weakly stationary but strictly stationary: see Nelson (1990). To cover the IGARCH case, Lee
and Hansen (1994) and Lumsdaine (1996) derived asymptotic results for GARCH(1, 1) models with-
out the weak stationarity assumption; in addition, Bougerol and Picard (1992) verified a necessary
and sufficient condition for GARCH(p, q) process to be strictly stationary by applying the theory of
products of random matrices and the top Lyapunov exponent. It is noteworthy that the region of pa-
rameters (to allow the strict stationarity) is larger than that for the weak stationarity. Berkes et al.
(2003), Francq and Zakoı̈an (2004), and Straumann and Mikosch (2006) established the asymptotic
properties of quasi-maximum likelihood estimators(QMLE) for GARCH-type models under the strict
stationarity assumption: see also Li et al. (2002).

According to Nelson (1990), the conditional variance of GARCH(1, 1) process explodes to the
infinity if the process is not strictly stationary and the intercept is positive. Recently, Jensen and Rah-
bek (2004) and Francq and Zakoı̈an (2012) studied the asymptotic properties of Gaussian-QMLE for
nonstationary GARCH(1, 1) processes. Francq and Zakoı̈an (2012) also proposed a strict stationarity
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test based on the estimator of the Lyapunov exponent and showed that their test has a robust feature
against the model misspecification.

In this paper, we analyze 11 series of daily asset returns ranging from 1996 to 2012. We perform
a strict stationarity test in each year to investigate how often the time series show nonstationary be-
havior such as explosive volatility. In Section 2, we review the conditions for the strict stationarity
of GARCH processes. Further, the asymptotic theory for the nonstationary GARCH models and the
strict stationarity test are summarized. In Section 3 provides, an empirical study is provided.

2. Strict Stationarity of GARCH Processes

This section reviews the strict stationarity of GARCH processes and introduces a recent method for
the stationarity test.

2.1. Lyapunov exponent

The GARCH(1, 1) model is defined by

εt =
√

htηt, ht = ω + αε
2
t−1 + βht−1, (2.1)

where ω > 0, α ≥ 0, β ≥ 0, and {ηt} is a sequence of i.i.d. random variables with Eηt = 0 and
Eη2

t = 1. The Equation (2.1) can be interpreted as the one defining a first order homogeneous Markov
process {(εt, ht) : t = 0, 1, 2, . . .}, of which the state space is R × (0,∞) and the initial state is (ε0, h0).
Bollerslev (1986) verified that the Equation (2.1) admits a weakly stationary solution if and only if
α + β < 1. Theorem 2 of Nelson (1990) shows that the Equation (2.1) has a unique strictly stationary
solution if and only if

E
[
log

(
β + αη2

t

)]
< 0. (2.2)

It is noteworthy that Theorem 2 of Nelson (1990) does not require the restrictions Eηt = 0 and
Eη2

t = 1. It is only assumed that E[log(β + αη2
t )] exists, for which E log+ η2

t < ∞ is sufficient where
log+ x = max{log x, 0}: see Lemma 2.2 of Straumann and Mikosch (2006).

Let us recall the linkage of (2.1) and (2.2). Model (2.1) involves the following stochastic recur-
rence equation(SRE): for t ≥ 1,

ht = ω +
(
β + αη2

t−1

)
ht−1. (2.3)

Subsequent substitution yields that

ht = ω

1 +
t−1∑
k=1

(
β + αη2

t−1

)
· · ·

(
β + αη2

t−k

) + (
β + αη2

t−1

)
· · ·

(
β + αη2

0

)
h0.

By the law of large numbers, the condition (2.2) implies that there exists δ > 0 such that
∏k

i=1(β +
αη2

t−i) = O(e−δk) with probability one, so
∑∞

k=1
∏k

i=1(β + αη2
t−i) converges a.s. Theorem 2 of Nelson

(1990) verified that (2.2) is a necessary and sufficient condition for the convergence of the series.
Then, we can see that ht,∞ := ω

{
1 +

∑∞
k=1(β + αη2

t−1) · · · (β + αη2
t−k)

}
is well-defined and is a strictly

stationary solution to the SRE (2.3). Assuming h0 = h0,∞, the bivariate Markov process {(εt, ht) : t =
0, 1, 2, . . .} is strictly stationary, so its time domain can be extended to Z by Kolmogorov’s extension
theorem; see Billingsley (1995). Further, the stationary solution to the Equation (2.1) is explicitly
expressed as εt = h1/2

t,∞ηt and {(εt, ht) : t ∈ Z} is ergodic by Theorem 36.4 of Billingsley (1995).
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Bougerol and Picard (1992) studied the strict stationarity of the GARCH(p, q) model:

εt =
√

htηt, ht = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

β jht− j, (2.4)

where ω > 0, αi ≥ 0 (1 ≤ i ≤ q), β j ≥ 0 (1 ≤ j ≤ p), and {ηt} is defined as in Model (2.1).
Following Bougerol and Picard (1992), let Yt = (ht, . . . , ht−p+1, ε

2
t−1, . . . , ε

2
t−q+1)T . Similarly to (2.3),

the GARCH(p, q) equation involves the following vector SRE:

Yt = b + At−1Yt−1, (2.5)

where b = (ω, 0, . . . , 0)T ∈ Rp+q−1 and At is a (p + q − 1) × (p + q − 1) random matrix written by

At =


τt βp α αq

Ip−1 0 0 0
ξt 0 0 0
0 0 Iq−2 0

 ,
with τt = (β1 + α1η

2
t , β2, . . . , βp−1) ∈ Rp−1, α = (α2, . . . , αq−1) ∈ Rq−2, and ξt = (η2

t , 0, . . . , 0) ∈ Rp−1.
Id denotes the identity matrix of size d. Let ∥A∥ be any norm of a square matrix A. As in the case of
GARCH(1, 1), the SRE (2.5) has a strictly stationary solution if and only if

∑∞
k=1

∏k
i=1 At−i converges

a.s. It is well known that the series converges if and only if

0 > γL := inf
t∈N

1
t

E[log ∥AtAt−1 · · · A1∥] = lim
t→∞

1
t

log ∥AtAt−1 · · · A1∥ a.s., (2.6)

where γL is called the top Lyapunov exponent of a sequence of i.i.d. random matrices {At : t ∈ Z} and
the second equality follows from Kingman (1973). Hence, the condition (2.6) is a necessary and suf-
ficient condition for the existence of a strictly stationary solution to the GARCH(p, q) Equation (2.4).
For instance, if we set p = 1, q = 2, and α2 = 0, then

1
t

log ∥AtAt−1 · · · A1∥ =
1
t

t−1∑
i=1

log
(
β1 + α1η

2
t−i

)
+

1
t

log ∥At∥.

Thus, the Lyapunov exponent, γL, associated with GARCH(1, 1) model is E[log(β1 + α1η
2
t )]. An

alternative vector representation instead of (2.5) can be found in Francq and Zakoı̈an (2004). Further,
the stationarity conditions for various GARCH-type models can be stated by using the concept of
Lyapunov exponent; see Lee and Lee (2012) and Medeiros and Veiga (2009).

Let us turn our attention back to GARCH(1, 1) model (2.1). If the condition (2.2) is violated,
that is, γL ≥ 0, then the GARCH process becomes nonstationary and ht → ∞ a.s., as shown by
Nelson (1990). To check the stationarity assumption, we need to test whether γL < 0 or not. This
test will expose whether the volatility of a given heteroscedastic series is explosive or stationary.
Construction of the test obviously requires the inference of γL = E[log(β + αη2

t )] for nonstationary
GARCH(1, 1) process, which was recently studied by Francq and Zakoı̈an (2012).

2.2. Estimation in possibly nonstationary GARCH(1, 1) models

Let {εt : 1 ≤ t ≤ n} be a sample from the GARCH(1, 1) model (2.1) with the true parameter θ0 =

(ω0, α0, β0)T . The Gaussian-QMLE is defined as

θ̂n =
(
ω̂n, α̂n, β̂n

)T
= argmin

θ∈Θ

1
n

n∑
t=1

{
ε2

t

σ2
t (θ)
+ logσ2

t (θ)
}
, (2.7)
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where σ2
t (θ) = ω + αε2

t−1 + βσ
2
t−1(θ) for t ≥ 1 with some initial values for ε2

0 and σ2
0(θ). Since

we consider both the stationary and nonstationary cases, we allow the parameter space to be Θ be
any compact subset of (0,∞) × [0,∞)2. Denote by γ0 = E[log(β0 + α0η

2
1)] the Lyapunov exponent

associated with the GARCH(1, 1) model. In the case of γ0 < 0, Berkes et al. (2003) and Francq and
Zakoı̈an (2004) studied the

√
n-consistency and asymptotic normality of the QMLE, {θ̂n} under mild

conditions. In the nonstationary case of γ0 ≥ 0, Francq and Zakoı̈an (2012) verified that if θ0 is an
interior point of Θ, κη = Eη4

1 ∈ (1,∞) and E| log η2
1| < ∞, {(α̂n, β̂n)} is consistent and asymptotically

normal, while {ω̂n} is inconsistent. Though the technical assumptions put certain restrictions on Θ,
they appear to be unimportant in view of the numerical study in Section 3.

A natural estimator of γ0 is

γ̂n =
1
n

n∑
t=1

log
(
β̂n + α̂nη̂

2
t

)
,

where {η̂t} are scaled residuals obtained from η̂t = εt/σt(θ̂n). Theorem 3.1 of Francq and Zakoı̈an
(2012) states that if the above-mentioned assumptions hold and E| log η2

1|2 < ∞, then

√
n (γ̂n − γ0)

d−→ N
(
0, σ2

γ

)
, (2.8)

where

σ2
γ =

σ2
u + ∆, when γ0 < 0,

σ2
u, when γ0 ≥ 0,

σ2
u = Var[log(β0 + α0η

2
1)], and ∆ is a positive number defined in Theorem 3.1 of Francq and Zakoı̈an

(2012).

2.3. Testing for strict stationarity

The validity of the stationarity assumption for the GARCH(1, 1) model (2.1) can be tested by using
the asymptotic result (2.8). We set

H0 : γ0 ≥ 0 (The GARCH process is nonstationary),
H1 : γ0 < 0 (The GARCH process is strictly stationary).

(2.9)

The test statistic, proposed by Francq and Zakoı̈an (2012), is simply given by Tn =
√

nγ̂n/σ̂u where
σ̂2

u = n−1 ∑n
t=1{log(β̂n + α̂nη̂

2
t )}2 − γ̂2

n. It is notable that σ̂2
u converges to σ2

u in probability even when
the GARCH process is nonstationary. If γ0 = 0, Tn follows asymptotically N(0, 1). Thus, H0 is
rejected at α significance level when Tn < Φ−1(α) (Φ(·) is a c.d.f. of N(0, 1)). In other words,
under the hypothesis of nonstationarity, small values of the test statistic support that the underlying
GARCH(1, 1) process and the volatility process are strictly stationary. If Tn > Φ

−1(α), the process is
determined to be nonstationary, and the estimate ω̂n is not reliable while the others are still consistent
as mentioned in Subsection 2.2.

The test has a robust feature against misspecification. When the true model belongs to a wide
class of nonlinear GARCH-type model, it also holds that P(Tn < Φ

−1(α)) → 0 if the corresponding
Lyapunov exponent is positive, and P(Tn < Φ

−1(α))→ 1 if the exponent is negative; see Section 4 of
Francq and Zakoı̈an (2012).



Testing for Explosive Volatility 211

It is worth noting that a test for H0 : γ0 < 0 against H1 : γ0 ≥ 0 was also considered based on
the same test statistic Tn by Francq and Zakoı̈an (2012). In this test, H0 : γ0 < 0 is rejected at level α
if Tn > Φ

−1(1 − α), thus a series is tested to be nonstationary more conservatively than in testing for
(2.9).

3. Empirical Analysis

3.1. Computational aspects

The stationarity test is implemented using the QMLE defined in (2.7). Computational procedure in
handling possibly nonstationary GARCH models is slightly different from the stationary case: the first
is the parameter space Θ and the second is the choice of initial values for ε2

0 and σ2
0(θ). Since the weak

or strict stationarity is implicitly assumed in the most packages, the domain of optimization is taken
to be either α + β ≤ 1 or α ≤ 1 and β ≤ 1. For the implication of parameter regions, see Figure 1 of
Nelson (1990). In this study, we do not impose such constraints and choose Θ with α ≤ 4 and β ≤ 2:
normal-ARCH(1) model is strictly stationary if α < 3.5621, see Li et al. (2002). When the true model
is stationary, it can be seen that the Gaussian log-likelihood function for β ≥ 1 has very small values.
Thus, the change of Θ has no effect on the estimation for stationary GARCH models. As an initial
value for ε2

0 and σ2
0(θ), the sample average of ε2

1, . . . , ε
2
n is chosen in the stationary case; however,

this can cause a serious bias in the nonstationary case since the average may diverge. In this study,
the initial value is chosen as ε2

1, which performs reasonably in both the stationary and nonstationary
cases.

In the following real data analysis, we fit each daily return series of asset prices with two models:
pure GARCH(1, 1) model and AR(1)-GARCH(1, 1) model. The ordinary least squares(OLS) method
is employed for the estimation of AR coefficients and then the QMLE of GARCH parameters is
obtained based on the residuals. As an optimization algorithm to obtain QML estimates, nlminb
function in R is utilized.

This paper examines if the strict stationarity assumption actually holds in GARCH modeling pro-
cedure and to investigate how often real series show nonstationary behavior such as explosive volatil-
ity. We study ten stock market indices and one foreign exchange rate, including the Korea Composite
Stock Price Index(KOSPI), AhnLab stock price, and Korean Won/USD exchange rate. The daily log
returns are computed as 100 times the difference of the log of the prices. The returns range from Jan-
uary 3, 1996 (if available) to December 28, 2012. Table 1 describes the category and sample period
of the analyzed 11 time series of returns.

3.2. Real data analysis

The main objective of this paper is to check whether the strict stationarity assumption actually holds
in GARCH modeling procedure and to investigate how often real series show nonstationary behavior
such as explosive volatility. We study ten stock market indices and one foreign exchange rate, in-
cluding the Korea Composite Stock Price Index (KOSPI), AhnLab stock price, and Korean Won/USD
exchange rate. The daily log returns are computed as 100 times the difference of the log of the prices.
The returns range from January 3, 1996 (if available) to December 28, 2012. Table 1 describes the
category and sample period of the analyzed 11 time series of returns.

We examine if the volatility of returns is stationary or explosive in each year; subsequently, the
strict stationarity test for the hypotheses (2.9) in Subsection 2.3 is implemented to yearly sets of
returns, which totally amount to 167 sets. The result indicates that only a few series violate the
stationarity assumption. Based on the pure GARCH(1, 1) model, the nonstationarity null hypothesis
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Table 1: Description of the data
Name Category Sample period

KOSPI Price index of Korea stock market 1996/01/03 ∼ 2012/12/28
KOSPI200 Price index of Korea stock market 1996/01/03 ∼ 2012/12/28
KORBANK Price index of Korea stock market 1996/01/03 ∼ 2012/12/28
KOSDAQ Price index of Korea stock market 1997/01/04 ∼ 2012/12/28
KOSDAQ IT Price index of Korea stock market 1999/01/05 ∼ 2012/12/28
Samsung Elec. Company listed on KOSPI 1996/01/03 ∼ 2012/12/28
POSCO Company listed on KOSPI 1996/01/03 ∼ 2012/12/28
AhnLab Company listed on KOSDAQ 2002/01/02 ∼ 2012/12/28
Celltrion Company listed on KOSDAQ 2006/01/02 ∼ 2012/12/28
S&P500 Price index of USA stock market 1996/01/02 ∼ 2012/12/28
Won/USD Foreign exchange rate 1996/01/03 ∼ 2012/12/28

Table 2: Testing results when the nonstationarity hypothesis is not rejected based on the GARCH(1, 1) model
Name α̂ β̂ γ̂ p-value

KOSPI200 during 1997 0.1633(0.0645) 0.8457(0.0661) −0.0119(0.0134) 0.1880
Won/USD during 2008 0.4585(0.1387) 0.6564(0.0699) −0.0462(0.0300) 0.0615
S&P500 during 2009 0.0701(0.0275) 0.9277(0.0236) −0.0056(0.0063) 0.1890
AhnLab during 2011 0.1835(0.0510) 0.8343(0.0422) −0.0139(0.0144) 0.1667

Note: The figures in parentheses is the standard error.

Table 3: Testing results when the nonstationarity hypothesis is not rejected based on the AR(1)-GARCH(1, 1)
model

Name α̂ β̂ γ̂ p-value
Won/USD during 1997 0.3882(0.1208) 0.7010(0.0811) −0.0343(0.0259) 0.0927
AhnLab during 2011 0.1785(0.0508) 0.8401(0.0430) −0.0080(0.0135) 0.2757
Won/USD during 2012 0.0745(0.0301) 0.9241(0.0265) −0.0034(0.0058) 0.2816

Note: The figures in parentheses is the standard error.

is not rejected at 5% significance level for 4 series among 167 sets of returns: AhnLab in 2011,
KOSPI200 in 1997, S&P500 in 2009, and Won/USD in 2008. Table 2 reports the parameter estimates
and p-values of test statistics for those series. A slightly different testing result is obtained based on
the AR(1)-GARCH(1, 1) model. The 3 series of AhnLab in 2011 and Won/USD in 1997 and 2012
are reported to be nonstationary (Table 3). Our results confirm that most times the volatility of the
considered asset returns is stationary except for the periods reported in Tables 2 and 3.

Now, we pay attention to the series in Tables 2 and 3, which show nonstationary behavior. Recall
that the QMLE of ω0 is inconsistent under H0 : γ0 ≥ 0, while α̂ and β̂ are not. Further, the asymptotic
variance of (α̂, β̂) in the nonstationary case can be estimated by the same covariance estimator as in
the stationary case: see Theorems 2.3 of Francq and Zakoı̈an (2012). In Tables 2 and 3, we can find
an interesting fact that the returns of AhnLab stock prices in 2011 exhibit nonstationary volatility
based on both the two models. The time series plot of the returns in Figure 1 shows an evidence
of nonstationarity, which indicates a change of unconditional variance. The change seems to be due
to a political event relevant to the CEO of the company. Based on the AR(1)-GARCH(1, 1) model,
Won/USD returns in 1997 are also found to be nonstationary and Figure 1 shows that the volatility
is literally exploding in this period. The plot is well explained with the currency crisis erupted on
November 17, 1997. The Korean exchange rate system was transferred from the market average
exchange rate system to the freely floating exchange rate system on December 16, 1997.

For the whole series of AhnLab and Won/USD returns, further investigation is implemented.
Based on the AR(1)-GARCH(1, 1) model, the stationarity test is implemented to every piece of con-
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Figure 1: Time series plots of (a) AhnLab during 2011 and (b) Won/USD during 1997.
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Figure 2: Time series plots of AhnLab returns and p-values: the dotted line denotes the significance level 0.05.

secutive 250 daily returns. Figures 2 and 3 presents the time series plots of p-values for AhnLab
and Won/USD series, respectively. The results show that Won/USD returns violate the stationarity
assumption more frequently than AhnLab returns.

In summary, we can conclude that the asset returns in this study show nonstationary volatility
infrequently. Three yearly sets among 150 sets of stock price returns exhibit nonstationarity in either
GARCH(1, 1) or AR(1)-GARCH(1, 1) fitting. Further, Won/USD returns are also reported to be non-
stationary at three periods in 17 years. Explosive volatility is found to occur more often in foreign
exchange markets than in Korean stock market.
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Figure 3: Time series plots of Won/USD returns and p-values: the dotted line denotes the significance level 0.05.
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