• Title/Summary/Keyword: nonsingular quartic moment problem

Search Result 2, Processing Time 0.016 seconds

ON NONSINGULAR EMBRY QUARTIC MOMENT PROBLEM

  • Li, Chungji;Sun, Xiaoyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.337-350
    • /
    • 2007
  • Given a collection of complex numbers ${\gamma}{\equiv}\{{\gamma}ij\}$ $(0{\leq}i+j{\leq}2n,\;|i-j|{\leq}n)$ with ${\gamma}00>0\;and\;{\gamma}ji=\bar{\gamma}ij$, we consider the moment problem for ${\gamma}$ in the case of n=2, which is referred to Embry quartic moment problem. In this note we give a partial solution for the nonsingular case of Embry quartic moment problem.

THE QUARTIC MOMENT PROBLEM

  • Li, Chun-Ji;Lee, Sang-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.723-747
    • /
    • 2005
  • In this paper, we consider the quartic moment problem suggested by Curto-Fialkow[6]. Given complex numbers $\gamma{\equiv}{\gamma}^{(4)}\;:\;{\gamma00},\;{\gamma01},\;{\gamma10},\;{\gamma01},\;{\gamma11},\;{\gamma20},\;{\gamma03},\;{\gamma12},\;{\gamma21},\;{\gamma30},\;{\gamma04},\;{\gamma13},\;{\gamma22},\;{\gamma31},\;{\gamma40}$, with ${\gamma00},\;>0\;and\;{\gamma}_{ji}={\gamma}_{ij}$ we discuss the conditions for the existence of a positive Borel measure ${\mu}$, supported in the complex plane C such that ${\gamma}_{ij}=\int\;\={z}^i\;z^j\;d{\mu}(0{\leq}i+j{\leq}4)$. We obtain sufficient conditions for flat extension of the quartic moment matrix M(2). Moreover, we examine the existence of flat extensions for nonsingular positive quartic moment matrices M(2).