• Title/Summary/Keyword: nonparametric regression

Search Result 191, Processing Time 0.02 seconds

QUASI-LIKELIHOOD REGRESSION FOR VARYING COEFFICIENT MODELS WITH LONGITUDINAL DATA

  • Kim, Choong-Rak;Jeong, Mee-Seon;Kim, Woo-Chul;Park, Byeong-U.
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.367-379
    • /
    • 2004
  • This article deals with the nonparametric analysis of longitudinal data when there exist possible correlations among repeated measurements for a given subject. We consider a quasi-likelihood regression model where a transformation of the regression function through a link function is linear in time-varying coefficients. We investigate the local polynomial approach to estimate the time-varying coefficients, and derive the asymptotic distribution of the estimators in this quasi-likelihood context. A real data set is analyzed as an illustrative example.

On the analysis of multistate survival data using Cox's regression model (Cox 회귀모형을 이용한 다중상태의 생존자료분석에 관한 연구)

  • Sung Chil Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.53-77
    • /
    • 1994
  • In a certain stochastic process, Cox's regression model is used to analyze multistate survival data. From this model, the regression parameter vectors, survival functions, and the probability of being in response function are estimated based on multistate Cox's partial likelihood and nonparametric likelihood methods. The asymptotic properties of these estimators are described informally through the counting process approach. An example is given to likelihood the results in this paper.

  • PDF

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

Stable activation-based regression with localizing property

  • Shin, Jae-Kyung;Jhong, Jae-Hwan;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2021
  • In this paper, we propose an adaptive regression method based on the single-layer neural network structure. We adopt a symmetric activation function as units of the structure. The activation function has a flexibility of its form with a parametrization and has a localizing property that is useful to improve the quality of estimation. In order to provide a spatially adaptive estimator, we regularize coefficients of the activation functions via ℓ1-penalization, through which the activation functions to be regarded as unnecessary are removed. In implementation, an efficient coordinate descent algorithm is applied for the proposed estimator. To obtain the stable results of estimation, we present an initialization scheme suited for our structure. Model selection procedure based on the Akaike information criterion is described. The simulation results show that the proposed estimator performs favorably in relation to existing methods and recovers the local structure of the underlying function based on the sample.

Evaluation of Extreme Rainfall based on Typhoon using Nonparametric Monte Carlo Simulation and Locally Weighted Polynomial Regression (비매개변수적 모의발생기법과 지역가중다항식을 이용한 태풍의 극치강우량 평가)

  • Oh, Tae-Suk;Moon, Young-Il;Chun, Si-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.193-205
    • /
    • 2009
  • Typhoons occurred in the tropical Pacific region, these might be affected the Korea moving toward north. The strong winds and the heavy rains by the typhoons caused a natural disaster in Korea. In the research, the heavy rainfall events based on typhoons were evaluated quantitative through various statistical techniques. First, probability precipitation and typhoon probability precipitation were compared using frequency analysis. Second, EST probability precipitation was calculated by Empirical Simulation Techniques (EST). Third, NL probability precipitation was estimated by coupled Nonparametric monte carlo simulation and Locally weighted polynomial regression. At the analysis results, the typhoons can be effected Gangneung and Mokpo stations more than other stations. Conversely, the typhoons can be effected Seoul and Inchen stations less than other stations. Also, EST and NL probability precipitation were estimated by the long-term simulation using observed data. Consequently, major hydrologic structures and regions where received the big typhoons impact should be review necessary. Also, EST and NL techniques can be used for climate change by the global warming. Because, these techniques used the relationship between the heavy rainfall events and the typhoons characteristics.

On relationship among h value, membership function, and spread in fuzzy linear regression using shape-preserving operations

  • Hong, Dug-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.306-310
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

  • PDF

Relationship Among h Value, Membership Function, and Spread in Fuzzy Linear Regression using Shape-preserving Operations

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.306-311
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

Goodness-of Fit Tests in Regression via Nonparametric Function Techniques

  • Kim, Jong-Tae;Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.2
    • /
    • pp.95-106
    • /
    • 1994
  • A proposed test statistic is obtained by multiplying constant weights by the Neumann smooth type statistic discussed by Eubank and Hart(1993) in order to observe the effect of weight. It has very good results of power studies. Another advantage of this test is that it simultaneously provides an important diagnostic tools that can be used in many cases to determine how the model should be adjusted.

  • PDF

Test of Symmetry against Near Type III Positive Biasedness

  • Oh, Myong-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.63-68
    • /
    • 2003
  • One of the widely accepted assumptions in many statistical problem is that the underlying distribution is symmetric. Though a large number of nonparametric test are available in the literature for this problem, very few procedures focuses on the distributional structure when the symmetry assumption is rejected. Yanagimoto and Sibuya (1972) provided the various types of asymmetric distributional structure, positive biasedness, namely. In this paper we consider the test of symmetry against several new positive biasedness restrictions which are stronger than Yanagimoto and Sibuya's type II bias but weaker than type IV (III) bias.

  • PDF

Statistical Inference for Peakedness Ordering Between Two Distributions

  • Oh, Myong-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • The concept of dispersion is intrinsic to the theory and practice of statistics. A formulation of the concept of dispersion can be obtained by comparing the probability of intervals centered about a location parameter, which is peakedness ordering introduced first by Birnbaum (1948). We consider statistical inference concerning peakedness ordering between two arbitrary distributions. We propose nonparametric maximum likelihood estimator of two distributions under peakedness ordering and a likelihood ratio test for equality of dispersion in the sense of peakedness ordering.

  • PDF