• Title/Summary/Keyword: nonlocal Eringen theory

Search Result 139, Processing Time 0.019 seconds

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions

  • Ebrahimi, Farzad;Kokaba, Mohammadreza;Shaghaghi, Gholamreza;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.169-182
    • /
    • 2020
  • This study presents the hygro-thermo-electromagnetic mechanical vibration attributes of elastically restrained piezoelectric nanobeam considering effects of beam surface for various elastic non-ideal boundary conditions. The nonlocal Eringen theory besides the surface effects containing surface stress, surface elasticity and surface density are employed to incorporate size-dependent effects in the whole of the model and the corresponding governing equations are derived using Hamilton principle. The natural frequencies are derived with the help of differential transformation method (DTM) as a semi-analytical-numerical method. Some validations are presented between differential transform method results and peer-reviewed literature to show the accuracy and the convergence of this method. Finally, the effects of spring constants, changing nonlocal parameter, imposed electric potential, temperature rise, magnetic potential and moisture concentration are explored. These results can be beneficial to design nanostructures in diverse environments.

Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam

  • Zhou, Jinxuan;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.85-97
    • /
    • 2022
  • Using a combination of nonlocal Eringen as well as classical beam theories, this research explores the thermal buckling of a bidirectional functionally graded nanobeam. The formulations of the presented problem are acquired by means on conserved energy as well as nonlocal theory. The results are obtained via generalized differential quadrature method (GDQM). The mechanical properties of the generated material vary in both axial and lateral directions, two-dimensional functionally graded material (2D-FGM). In nanostructures, porosity gaps are seen as a flaw. Finally, the information gained is used to the creation of small-scale sensors, providing an outstanding overview of nanostructure production history.

Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory

  • Abdulrazzaq, Mohammed Abdulraoof;Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.147-157
    • /
    • 2020
  • In the present research, thermo-elastic buckling of small scale functionally graded material (FGM) nano-size plates with clamped edge conditions rested on an elastic substrate exposed to uniformly, linearly and non-linearly temperature distributions has been investigated employing a secant function based refined theory. Material properties of the FGM nano-size plate have exponential gradation across the plate thickness. Using Hamilton's rule and non-local elasticity of Eringen, the non-local governing equations have been stablished in the context of refined four-unknown plate theory and then solved via an analytical method which captures clamped boundary conditions. Buckling results are provided to show the effects of different thermal loadings, non-locality, gradient index, shear deformation, aspect and length-to-thickness ratios on critical buckling temperature of clamped exponential graded nano-size plates.

Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis

  • Qiuyang Cheng;H. Elhosiny Ali;Ibrahim Albaijan
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.215-228
    • /
    • 2023
  • The vibrational behavior of nanoelements is critical in determining how a nanostructure behaves. However, combining vibrational analysis with stability analysis allows for a more comprehensive knowledge of a structure's behavior. As a result, the goal of this research is to characterize the behavior of nonlocal nanocyndrical beams with uniform and nonuniform cross sections. The nonuniformity of the beams is determined by three distinct section functions, namely linear, convex, and exponential functions, with the length and mass of the beams being identical. For completely clamped, fully pinned, and cantilever boundary conditions, Eringen's nonlocal theory is combined with the Timoshenko beam model. The extended differential quadrature technique was used to solve the governing equations in this research. In contrast to the other boundary conditions, the findings of this research reveal that the nonlocal impact has the opposite effect on the frequency of the uniform cantilever nanobeam. Furthermore, since the mass of the materials employed in these nanobeams is designed to remain the same, the findings may be utilized to help improve the frequency and buckling stress of a resonator without requiring additional material, which is a cost-effective benefit.

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam;Rabab A. Shanab;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.

Analyses of tapered fgm beams with nonlocal theory

  • Pradhan, S.C.;Sarkar, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.811-833
    • /
    • 2009
  • In the present article bending, buckling and vibration analyses of tapered beams using Eringen non-local elasticity theory are being carried out. The associated governing differential equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are considered in the analyses. Present results are in good agreement with those reported in literature. Beam material is considered to be made up of functionally graded materials (fgms). Non-local analyses for tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum deflections, vibration frequencies and critical buckling loads are studied.

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions

  • Karami, Behrouz;Shahsavari, Davood;Ordookhani, Ali;Gheisari, Parastoo;Li, Li;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.689-702
    • /
    • 2020
  • The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.