• 제목/요약/키워드: nonlinear wave model

검색결과 334건 처리시간 0.027초

터렛계류된 FPSO의 비선형 운동 해석 (Nonlinear Motion Analysis of FPSO with Turret Mooring System)

  • 임춘규;이호영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

Frequency analysis of wave run-up on vertical cylinder in transitional water depth

  • Deng, Yanfei;Yang, Jianmin;Xiao, Longfei;Shen, Yugao
    • Ocean Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.201-213
    • /
    • 2014
  • Wave run-up is an important issue in offshore engineering, which is tightly related to the loads on the marine structures. In this study, a series of physical experiments have been performed to investigate the wave run-up around a vertical cylinder in transitional water depth. The wave run-ups of regular waves, irregular waves and focused waves have been presented and the characteristics in frequency domain have been investigated with the FFT and wavelet transform methods. This study focuses on the nonlinear features of the wave run-up and the interaction between the wave run-up and the cylinder. The results show that the nonlinear interaction between the waves and the structures might result wave run-up components of higher frequencies. The wave run-ups of the moderate irregular waves exhibit 2nd order nonlinear characteristics. For the focused waves, the incident waves are of strong nonlinearity and the wavelet coherence analysis reveals that the wave run-up at focal moment contains combined contributions from almost all the frequency components of the focused wave sequence and the contributions of frequency components up to 4th order harmonic levels are recommended to be included.

해안구조물과 파랑상호작용에 관한 수치모델 및 실험 (Measurement and Numerical Model on Wave Interaction with Coastal Structure)

  • 김인철
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.30-38
    • /
    • 2009
  • 최근에 해안구조물의 시공에 있어 친수성 및 방재 기능을 동시에 갖는 구조물이 검토되는 사례가 증가하고 있다. 본 연구의 목적은 비교적 급한 1:5 사면을 가진 해안구조물 위로 전파하는 파랑변형 및 파의 처오름을 예측하는 것이다. 사면 위의 파랑변형 및 처오름을 해석하기 위하여 비선형 천수방정식을 사용하였으며, 투수층 내의 유체운동에는 확장형 Forchheimer의 저항법칙에 근거한 비선형, 비정상 Darcy법칙을 적용하여 규칙파 및 불규칙파를 대상으로 수행되었고, 계산결과는 PBREAK 수치모델의 적용성 및 한계성을 검토하기 위하여 수리모형실험 결과와 비교검토 되었다. PBREAK 수치모델은 사면 위의 파형의 변화를 잘 예측하였으나 질량 및 운동량의 교환이 많이 발생하는 쇄파대 내에서 수리모형실험 결과와 약간의 차이를 보여주었다. 또한 수심평균된 수립자 유속은 파봉 부근을 제외하고 파곡 아래에서 계측한 실험치와 잘 일치하였다.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

불투수성 급경사면 위의 파랑상호작용에 관한 수치모델 및 실험 (Measurement and Numerical Model for Wave Interation on Impermeable Steep Slopes)

  • 김인철;안익성
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.44-51
    • /
    • 2008
  • The planning and design of coastal structures against wave attack is required to accurately predict wave transformation, wave run-up, and fluid. particlevelocities an a slope. On tire other hand, in tire swash and surf zones of a natural beach, where coastal erosion and accretion occur at tire land-sea boundary, hydrodynamic analysis is essential. In this study, a RBREAK2 numerical model was created based on the nonlinear shallow water equation and laboratory measurements were carried out in terms of tire free surface elevations and velocities for tire cases of regular and irregular waves on 1 : 10 and 1 : 5 impermeable slopes. The data were used to evaluate tire applicability and limitations of tire RBREAK2 numerical model. The numerical mode1 could predict tire cross-shore variation of the wave profile reasonably well, but showed more accurate results for slopes that were steeper than 1 : 10. Except near tire wave crest, tire computed depth averaged velocities could represent tire measured profile below tire trough level fairly well.

상태피드백 실시간 회귀 신경회망을 이용한 EEG 신호 예측 (EEG Signal Prediction by using State Feedback Real-Time Recurrent Neural Network)

  • 김택수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.39-42
    • /
    • 2002
  • For the purpose of modeling EEG signal which has nonstationary and nonlinear dynamic characteristics, this paper propose a state feedback real time recurrent neural network model. The state feedback real time recurrent neural network is structured to have memory structure in the state of hidden layers so that it has arbitrary dynamics and ability to deal with time-varying input through its own temporal operation. For the model test, Mackey-Glass time series is used as a nonlinear dynamic system and the model is applied to the prediction of three types of EEG, alpha wave, beta wave and epileptic EEG. Experimental results show that the performance of the proposed model is better than that of other neural network models which are compared in this paper in some view points of the converging speed in learning stage and normalized mean square error for the test data set.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

파형벽면이 있는 채널 내의 난류유동에 대한 수치해석 (Numerical Simulation of Turbulent Flow in n Wavy-Walled Channel)

  • 박태선;성형진
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.655-667
    • /
    • 2003
  • Turbulent flow over a fully-developed wavy channel is investigated by the nonlinear $k-\varepsilon-f_\mu$ model of Park et al.(1) The Reynolds number is fixed at $Re_{b}$ = 6760 through all wave amplitudes and the wave configuration is varied in the range of $0\leq\alpha/\lambda\leq0.15$ and $0.25\leq{\lambda}/H\leq4.0$. The predicted results for wavy channel are validated by comparing with the DNS data of Maa$\beta$ and Schumann(2) The model performance Is shown to be generally satisfactory. As the wave amplitude increases, it is found that the form drag grows linearly and the friction drag is overwhelmed by the form drag. In order to verify these characteristics, a large eddy simulation is performed for four cases. The dynamic model of Germane et al.(3) is adopted. Finally, the effects of wavy amplitude on separated shear layer are scrutinized.

바닥면이 오목한 이동형 소방용수 저장탱크의 수직 벽면에서의 동수력 연구: 비선형 Peregrine 모델 (Investigation of Hydrodynamic Force in a Portable Water Storage Tank of Reentrant Bottom Shape using Nonlinear Peregrine Model)

  • 박진수;소수현;장택수
    • 한국화재소방학회논문지
    • /
    • 제33권5호
    • /
    • pp.61-65
    • /
    • 2019
  • 본 연구에서는 비선형 Peregrine 모델을 이용하여 바닥면이 오목한 이동형 소방용수 저장탱크 내에 용수 공급 노즐로부터 낙하한 용수로 인해 발생한 수면의 출렁임을 수치 모의하고 저장탱크의 수직 벽면에 작용하는 유체 동수력에 미치는 영향을 밝혔다. 또한 기존의 선형 Peregrine 모델을 이용한 수치 모의 연구 결과와 본 연구의 비선형 Peregrine 모델로 동일한 조건에서 수치 모의 계산하여 출렁임의 최대 파고 오름 높이와 출렁임에 의한 동수력 변화를 서로 비교하였다. 그 결과, 저장탱크 내부에 발생하는 출렁임의 움직임과 수직 벽면에 미치는 동수력의 영향을 고려할 수 있기 위해서는 비선형 Peregrine 모델을 사용하는 것이 더 적합하게 모의되는 것을 밝혔다. 이러한 결과는 이동형 소방용수 저장탱크의 안정적인 구조 설계에 기여할 수 있을 것으로 기대한다.

약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석 (Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves)

  • 이정우;조원철
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.539-549
    • /
    • 2006
  • 본 연구에서는 포텐셜 이론, 섭동법, 경계요소법에 근간을 둔 이차의 시간영역 수치모델을 개발하고 이를 이용하여 폰툰형 부방파제의 성능을 평가하였다. 다양한 설계조건에 대하여 파력, 운동변위, 자유수면고, 투과율 등의 변화를 고찰하였으며, 파랑의 약 비선형성이 방파제의 동수역학적 특성에 미치는 영향을 분석하는데 주안점을 두었다. 수치모의 수행 결과, 이차의 성분 파는 동유체력, 계류장력, 운동변위에 미치는 영향이 큰 것으로 분석되었으나, 파랑의 약 비선형성이 투과율에 미치는 영향은 매우 작아 선형해석만으로도 파랑제어효율을 평가할 수 있음을 확인하였다. 또한 파랑제어효율이 우수한 수심과 흘수의 비, 파수와 폭과의 관계 등을 제시하였다.