• 제목/요약/키워드: nonlinear wave forces

검색결과 101건 처리시간 0.022초

Hydrodynamic Forces Acting on the Submerged-Plate

  • 이상민;공길영;김철승;이윤석
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.149-153
    • /
    • 2003
  • The hydrodynamic forces acting on the submerged plate are composed of diffraction and radiation forces. Thus we have carried out the extensive experiments and numerical simulations to make clear the characteristics of the diffraction and radiation forces on the submerged plate. These experimental results are compared with the numerical ones, and we discuss the effect of nonlinear on the hydrodynamic forces acting on the submerged plate. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces on the structure behind the submerged plate.

  • PDF

Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析) (Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures)

  • 김용철;노인식;박성식
    • 대한조선학회지
    • /
    • 제23권2호
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF

A second order analytical solution of focused wave group interacting with a vertical wall

  • Sun, Yonggang;Zhang, Xiantao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.160-176
    • /
    • 2017
  • The interaction of focused wave groups with a vertical wall is investigated based on the second order potential theory. The NewWave theory, which represents the most probable surface elevation under a large crest, is adopted. The analytical solutions of the surface elevation, velocity potential and wave force exerted on the vertical wall are derived, up to the second order. Then, a parametric study is made on the interaction between nonlinear focused wave groups and a vertical wall by considering the effects of angles of incidence, wave steepness, focal positions, water depth, frequency bandwidth and the peak lifting factor. Results show that the wave force on the vertical wall for obliquely-incident wave groups is larger than that for normally-incident waves. The normalized peak crest of wave forces reduces with the increase of wave steepness. With the increase of the distance of focal positions from the vertical wall, the peak crest of surface elevation, although fluctuates, decreases gradually. Both the normalized peak crest and adjacent crest and trough of wave forces become larger for shallower water depth. For focused wave groups reflected by a vertical wall, the frequency bandwidth has little effects on the peak crest of wave elevation or forces, but the adjacent crest and trough become smaller for larger frequency bandwidth. There is no significant change of the peak crest and adjacent trough of surface elevation and wave forces for variation of the peak lifting factor. However, the adjacent crest increases with the increase of the peak lifting factor.

강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구 (A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments)

  • 홍석원;최학선;류재문;김진하
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

강제동용시 OWC형 파력발전 공기챔버의 공기반력 실험연구 (A Study of Pneumatic Reaction Force of Air Chamber for an OWC type Wave Energy Device by Forced Heave Experiments)

  • 최학선;류재문;홍석원;김진하
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.212-219
    • /
    • 2004
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct arc studied experimentally. Experimental OWC model is idealized as a simple circular cylinder with an orifice type air duct located at the middle of the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

  • PDF

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • 제5권2호
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

Application of the Weak-Scatterer Hypothesis to the Wave-Body Interaction Problems

  • Kim, Yong-hwan;Sclavounos, Paul-D.
    • Journal of Ship and Ocean Technology
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2000
  • The present study concentrates on the weak-scatterer hypothesis for the nonlinear wave-body interaction problems. In this method, the free surface boundary conditions are linearized on the incoming wave profile and the exact body motion is applied. The considered problems are the diffraction problem near a circular cylinder and the ship response in oblique waves. The numerical method of solution is a Rankine panel method. The Rankine panel method of this study adopts the higher-order B spline basis function for the approximation of physical variables. A modified Euler scheme is applied for the time stepping, which has neutral stability. The computational result shows some nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response shows very close results to experimental data.

  • PDF

수치파 수조를 이용한 파랑 충격력 수치해석 (Numerical Analysis of Wave Impact Forces in Numerical Wave Basin)

  • 신영섭;홍기용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 추계학술대회 논문집(제1권)
    • /
    • pp.205-210
    • /
    • 2006
  • 해양구조물 설계시 급격한 파랑에 의한 충격력은 구조물 안전을 위한 중요한 설계인자이다. 이러한 충격력은 과도한 하중이 극히 짧은 시간 사이에 발생하는 현상으로 실험적 또는 수치해석적으로 해석하기 매우 어려운 문제이다. 본 연구에서는 급격한 파랑에 의한 충격력을 해석하기 위하여 수치파수조를 이용하여 N.S. 방정식에 기반한 수치해석을 수행하였다. 임의파를 선형중첩에 기반하여 조파기를 작동시켜 재현하였고 다블록격자하에서 수직실린더에 작용하는 충격력을 수치해석하였다. 한편 자유표면은 V.O.F. 및 local height function을 이용하여 추적하였다. 수치해석 검증을 위하여 수치해석 및 실험 결과와 비교를 수행하였는데 비교적 만족할 수 있는 결과를 확인하였으나 해양구조물 설계시 유용한 결과를 얻기 위해서는 쇄파와 같은 극한파 재현과 극한파에 의한 충격력에 대한 많은 연구가 지속되어야 함을 알 수 있었다.

  • PDF

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

파도중 선박의 전복 현상 해석 (Analysis of Capsizing Phenomena of a Shop in Waves)

  • 안창구;고창두
    • 해양환경안전학회지
    • /
    • 제1권1호
    • /
    • pp.27-38
    • /
    • 1995
  • In this paper, a program for the calculation of GZ curve for a ship in waves is developed and GZ curves for a ferry in the still water and in waves are calculated. And the added mass, damping, restoring forces and wave exciting forces are calculated by using the strip theory given by Salvesen, Tuck, Faltinsen. Capsizing simulations are perfoned in consideration if the nonlinear restoring forces of the ship in waves by using the Runge-Kutta 4-th method.

  • PDF