• 제목/요약/키워드: nonlinear viscoelastic damping

검색결과 34건 처리시간 0.019초

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

유압 엔진 마운트의 동특성 해석 컴퓨터 시뮬레이션 방법 연구 (A Computer Simulation Method for Dynamic Analysis of Hydraulic Engine Mount System)

  • 임홍재;최동운;이상범
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.42-48
    • /
    • 1999
  • In this paper, a computer simulation method for dynamic analysis of the hydraulic engine mount system is proposed. The hydraulic engine mount system controls the damping characteristics using the viscosity of fluid flow The complex stiffness of the main rubber of the hydraulic engine mount system is computed by finite element analysis for the viscoelastic materials and hydro-static elements. A numerical analysis method is presented to solve nonlinear equations of the hydraulic engine mount system. which is composed of an engine mass, fluid in inertia track and a vertical inertia force of reciprocating mass in the engine. Also. dynamic properties of the hydraulic engine mount system are analyzed in the frequency domain. Effects of the hydraulic engine mount system running over the rough road are investigated using a vehicle dynamic model. These results are compared with those of the rubber mount system.

  • PDF

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

유한요소법을 이용한 Free-Friction Stroke 댐퍼의 동특성 해석 (A Study on the Dynamic Characteristics of Free-Friction Stroke Damper by Finite Element Method)

  • 구희춘;이재욱;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1417-1426
    • /
    • 2009
  • Various types of damper are usually applied to reduce noise and vibration for mechanical systems. Especially, for washing machines, the free-friction stroke damper is installed. The behavior of the free-friction stroke damper has nonlinear characteristics such as hysteresis and viscoelastic properties because of its foam material. First of all, the dynamic experiments were carried out by using a MTS machine to find characteristics of the free-friction stroke damper. And the simulation model of the free-friction stroke damper and characteristics of a foam material were evaluated by using optimization technique. To make a good simulation model which can show the dynamic characteristics, it is important to understand the working mechanism of the damper. The Finite Element Method (FEM) technique can help us instinctively understand the damping phenomenon under operating conditions, because we can observe the condition of damper at every step in the simulation by using it. Also, by changing factors, we can comprehend the variation of characteristics of damper. So, in this paper, a study on the dynamic characteristics of free-friction stroke damper by FEM is focused on. Finally, the possibility which physical experiments can be replaced into simulations is shown.