• Title/Summary/Keyword: nonlinear vibration response

Search Result 373, Processing Time 0.025 seconds

Analytical study on non-natural vibration equations

  • Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.671-677
    • /
    • 2017
  • In this paper, two powerful analytical methods called Variational Approach (VA) and Hamiltonian Approach (HA) are used to solve high nonlinear non-Natural vibration problems. The presented approaches are works well for the whole range of amplitude of the oscillator. The first iteration of the approaches leads us to high accurate solution. Numerical results are also presented by using Runge-Kutta's [RK] algorithm. The full comparison between the presented approaches and the numerical ones are shown in figures. The effects of important parameters on the response of nonlinear behavior of the systems are studied completely. Finally, the results show that the Variational Approach and Hamiltonian approach are strong enough to prepare easy analytical solutions.

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj;Ali, Abbache;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

Vibration control of low-rise buildings considering nonlinear behavior of concrete using tuned mass damper

  • Abbas Bigdeli;Md. Motiur Rahman;Dookie Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.209-220
    • /
    • 2023
  • This study investigates the effectiveness of tuned mass dampers (TMDs) in controlling vibrations in low-rise reinforced concrete buildings. It examines both linear and nonlinear behaviors of concrete structures subjected to strong ground motions from the PEER database. The research follows the ASCE 7-16 provisions to model structural nonlinearity. Additionally, the study explores the effect of varying TMD mass ratios on the performance of these systems in real-world conditions. The findings emphasize the importance of accounting for structural nonlinearity in low-rise buildings, highlighting its significant influence on the controlled response under severe seismic excitations. The study suggests including nonlinear analysis in seismic design practices and recommends customizing TMD designs to optimize vibration control. These recommendations have practical implications for enhancing the safety and effectiveness of seismic design practices for low-rise buildings.

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

Development of a Test Dummy for the Evaluation of Driver's Response to Vehicle Vibration (운전 자세에서의 인체진동 평가용 시험용 더미 개발)

  • 장한기;홍석인;송치문;김기선;이정훈;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • This paper introduces a process of the development of a vibration test dummy for the posture of inclined seating. Experimental devices was invented to measure apparent mass curves on the contact point of the hip and the back of a seated human body. During the excitation of a rigid seat secured to a hydraulic exciter, force and acceleration signals were measured on the contact points to determine the apparent mass. In order to describe nonlinear characteristics of a human body, seven levels of Gaussian random signal were used for the base excitation. The modeling of the human body will be performed using measured apparent mass curves. The modeling will be done by June and the prototype of the test dummy will be invented in the following six months.

  • PDF

Responses of Nonlinear Asymmetric Forced Vibrations of a Circular Plate (원판의 비선형 비대칭 강제진동응답)

  • 여명환;이원경
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.65-70
    • /
    • 2001
  • An investigation into asymmetric vibrations of a clamped circular place under a harmonic excitation is made. We examine a primary resonance. in which the frequency of excitation is near the natural frequency of an asymmetric mode of the plate. We found not only a response haying the form of standing wave but also one having the form of traveling wave, which was not observed by Sridhar, Mook and ${Nayfeh}^{(1)}$

  • PDF

Free Vibration of Mannequins and Car Seat System (마네킹과 자동차 시트 시스템의 진동 해석)

  • Kim, Seong-Keol;Lee, Jae-Hyung;Park, Ki-Hong;Lee, Sin-Young;Davies, Patricia;Bajaj, Anil K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1621-1626
    • /
    • 2000
  • A simplified modeling approach for occupied car seats was demonstrated to be feasible. The model, consisting of interconnected masses, springs and dampers, was initially broken down into subsystems and experiments conducted to determine approximate values for model parameters. A short study of the effect of changing model parameters on natural frequencies, mode shapes and resonance locations in frequency response functions was given, highlighting the influence of particular model parameters on features in the mannequin's vibration response. Good agreement between experimental and simulation frequency response estimates was obtained. Future work should include optimization of parameter estimates, the inclusion of viscoelastic and nonlinear elements in addition to the linear springs and dampers, and finally extensions to a 3D model.

  • PDF

Vibration of Car Seat and Mannequin System II (자동차 시트 및 마네킹 시스템의 진동 II)

  • Kim, Seong-Keol;Kim, Joon-Hyun;Park, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.398-403
    • /
    • 2001
  • A simplified modeling approach of forced vibration for occupied car seats was demonstrated by using a mathematical model presented in previous paper. Nonlinear and linear equations of motions were rederived for forced vibration, and the transfer function was used to calculate the frequency response function. The experimental apparatus were set up and hydraulic shaker was used to obtain the system responses. Through the tests, mannequin's head had a lot of problems, and the responses with a head and without a head were measured. To explore the effects of linear dampings and friction moments at the joints, linear analyses were performed. New sets of linear spring and damping coefficients, and torsional dampings at the joints were calculated through parameter study to match up with experimental results. Good agreement between experimental and simulation frequency response estimates were obtained both in terms of locations of resonances and system deflection shapes at resonance, indicating that this is a feasible method of modeling seated occupants.

  • PDF

Post-buckling Behavior and Vibration Characteristics of Patched Reinforced Spherical Composite Panels (패치로 보강된 구형 복합재료 패널의 후좌굴 거동 및 진동 특성해석)

  • Lee, J.J.;Yeom, C.H.;Lee, I.
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 2001
  • The finite element method based on the total Lagrangian description of the motion and the Hellinger-Reissner principle with independent strain is applied to investigate the nonlinear behavior and vibration characteristics for patched reinforced laminated spherical panels. The patched elements are formulated using variable thickness at arbitrary point on the reference plane. The cylindrical arc-length method is adopted to obtain a nonlinear solution. The post-buckled vibration is assumed to be small amplitude. The effect of patch in the spherical shell Panel is investigated on the nonlinear response and the fundamental vibration characteristics. The present results show that the load-carrying capability can be improved by reinforcing patch. The fundamental frequency of patched panel is lower than that of equivalent shell panel. However, the fundamental frequency of patched panel does not decrease greatly due to the increase of nonlinear geometrical stiffness under loading.

  • PDF

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.