• Title/Summary/Keyword: nonlinear uncertain system

Search Result 248, Processing Time 0.025 seconds

Design of The Stable Fuzzy Controller Using State Feedback Matrix (상태궤환행렬을 이용한 안정한 Fuzzy 제어기의 설계)

  • Choi, Seung-Gyu;Hong, Dae-Seung;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.534-536
    • /
    • 1999
  • Fuzzy Systems which are based on membership functions and rules, can control nonlinear, uncertain, complex systems well. However, Fuzzy logic controller(FLC) has problems; It is difficult to design the stable FLC and FLC depends mainly on individual experience. Although FLC can be designed using the error back-propagation algorithm, it takes long time to converge into global, optimal parameters. Well-developed linear system theory should not be replaced by FLC, but instead, it should be suitably used with FLC. A new methodology is introduced for designing THEN-PART membership functions of FLC based on its well-tuned state feedback controller. A example of inverted pendulum is given for demonstration of the robustness of proposed methodology.

  • PDF

A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW® (LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구)

  • Kang, Seok-Jeong;Chung, Won-Jee;Park, Seung-Kyu;Noe, Sung Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

A Study on the Fundamental Comparison of Simulation and Optimization Approaches for Water Resources Systems Planning and Management (수자원시스템의 효율적 운영을 위한 시뮬레이션과 최적화 기법의 원론적 비교 연구)

  • Kong, Jeong-Taek;Kim, Jaehee;Kim, Sheung-Kown
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.373-387
    • /
    • 2013
  • For the efficient operation and management of the water resources system, coordinated operation of weirs and reservoirs is required. A simulation based, and an optimization based approaches are available to deal with the operation and management problems. The simulation based approach does not guarantee an optimal solution, and the optimization based approach is not so flexible to consider, complex, nonlinear problems we will face when trying to allocate water to different uses, various demand sectors in a basin. Hence, it is important to develop a model that would compensate for the weak points in both models. We will compare and contrast intrinsic and extrinsic properties of two modeling approaches, addressing issues related to setting system operation and control rules that would lead us to more efficient use of water in the basin. As a result, we propose to use CoWMOM(Coordinated weirs and multi-reservoir operating model), a "simulation based" optimization model for a simple simulation of the past periods, and for the real-time simulation process considering uncertain inflow.

Fuzzy sliding mode controller design for improving the learning rate (퍼지 슬라이딩 모드의 속도 향상을 위한 제어기 설계)

  • Hwang, Eun-Ju;Cho, Young-Wan;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.747-752
    • /
    • 2006
  • In this paper, the adaptive fuzzy sliding mode controller with two systems is designed. The existing sliding mode controller used to $approximation{\^{u}}(t)$ with discrete sgn function and sat function for keeping the state trajectories on the sliding surface[1]. The proposed controller decrease the disturbance for uncertain control gain and This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems ate used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties ate demonstrated. Futhermore, fuzzy tuning improve tracking abilities by changing some sliding conditions. In the traditional sliding mode control, ${\eta}$ is a positive constant. The increase of ${\eta}$ has led to a significant decrease in the rise time. However, this has resulted in higher overshoot. Therefore the proposed ${\eta}$ tuning AFSMC improve the performances, so that the controller can track the trajectories faster and more exactly than ordinary controller. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

Development Of Fuzzy Logic Based Wristband For Healthcare (퍼지 논리 기반의 건강관리용 팔목 밴드 개발)

  • Hwang, Heesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.86-92
    • /
    • 2017
  • As the elderly population increases, real-time personal health monitoring is gaining new ground with advances in wireless communications. Such an approach is particularly beneficial to elderly and physically challenged people, as well as those who live alone and are not be able to seek help in case of medical emergencies. The aim of this study is to implement a wearable band which monitors personal vital signs, such as the body temperature and heart rate, and assists with healthcare decisions using a fuzzy logic based decision support system. Since the vital sign data measured from sensors are imprecise and their normal variation with age is nonlinear and not crisp, a fuzzy system is employed to deal with this imprecise or uncertain information. The proposed wearable band is designed to continuously capture and transmit vital signs and healthcare decisions to suitable apps developed for smartphones. In this way, health alerts can be sent to the guardian or caregiver who is registered in the apps.

Chattering Free Sliding Mode Control of Upper-limb Rehabilitation Robot with Handling Subject and Model Uncertainties (환자와 로봇의 모델 불확도를 고려한 상지재활로봇의 채터링 없는 슬라이딩 모드 제어)

  • Khan, Abdul Manan;Yun, Deok-Won;Han, Changsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.421-426
    • /
    • 2015
  • Need to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess human motor function and generate the command to assist in compliance with complex human motion. Upper limb rehabilitation robots, are one of those robots. These robots are used for the rehabilitation of patients having movement disorder due to spinal or brain injuries. One aspect that must be fulfilled by these robots, is to cope with uncertainties due to different patients, without significantly degrading the performance. In this paper, we propose chattering free sliding mode control technique for this purpose. This control technique is not only able to handle matched uncertainties due to different patients but also for unmatched as well. Using this technique, patients feel active assistance as they deviate from the desired trajectory. Proposed methodology is implemented on seven degrees of freedom (DOF) upper limb rehabilitation robot. In this robot, shoulder and elbow joints are powered by electric motors while rest of the joints are kept passive. Due to these active joints, robot is able to move in sagittal plane only while abduction and adduction motion in shoulder joint is kept passive. Exoskeleton performance is evaluated experimentally by a neurologically intact subjects while varying the mass properties. Results show effectiveness of proposed control methodology for the given scenario even having 20 % uncertain parameters in system modeling.

Ashbery's Aesthetics of Difficulty: Information Theory and Hypertext

  • Ryoo, Gi Taek
    • Journal of English Language & Literature
    • /
    • v.58 no.6
    • /
    • pp.1001-1021
    • /
    • 2012
  • This paper is concerned with John Ashbery's poetics of difficulty, questioning in particular the nature of communication in his difficult poems. Ashbery has an idea of poetry as 'information' to be transmitted to the reader. Meaning, however, is to be created by a series of selections among equally probable choices. Ashbery's poetry has been characterized by resistance to the interpretive system of meaning. But the resistance itself, as I will argue, can be an effective medium of communication as the communicated message is not simply transmitted but 'selected' and thus created by the reader. In Ashbery's poetry, disruptive 'noise' elements can be processed as constructive information. What is normally considered a hindrance or noise can be reversed and added to the information. In Ashbery's poems, random ambiguities or noises can be effectively integrated into the final structure of meaning. Such a stochastic sense of information transfer has been embodied in Ashbery's idea of creating a network of verbal elements in his poetry, analogous to the interconnecting web of hypertext, the most dynamic medium 'information technology' has brought to us. John Ashbery, whose poems are simultaneously incomprehensible and intelligent, employs ambiguities or noise in his poetry, with an attempt to reach through linear language to express nonlinear realities. It is therefore my intention to examine Ashbery's poetics of difficulty, from a perspective of communication transmission, using the theories of information technology and the principles of hypertext theory. Ashbery's poetry raises precisely the problem confronted in the era of communication and information technology. The paper will also show how his aesthetics of difficulty reflects the culture of our uncertain times with overflowing information. With his difficult enigmatic poems, Ashbery was able to move ahead of the technological advances of his time to propose a new way of perceiving the world and life.