• Title/Summary/Keyword: nonlinear time-varying analysis

Search Result 111, Processing Time 0.027 seconds

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

Design of Sliding Mode Controller Based on Adaptive Fault Diagnosis Observer for Nonlinear Continuous-Time Systems (비선형 연속 시간 시스템을 위한 적응 고장 진단 관측기 기반 슬라이딩 모드 제어기 설계)

  • Chang, Seung Jin;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.822-826
    • /
    • 2013
  • In this paper, we propose an AFDO (Adaptive Fault Diagnosis Observer) and a fault tolerant controller for a class of nonlinear continuous-time system under the nonlinear abrupt actuator faults. Together with its estimation laws, the AFDO which estimates that the actuator faults is designed by using the Lyapunov analysis. Then, based on the designed AFDO, an adaptive sliding mode controller is proposed as the fault tolerant controller. Using Lyapunov stability analysis, we also prove the uniform boundedness of the state, the output and the fault estimation errors, and the asymptotic stability of the tracking error under the nonlinear time-varying faults. Finally, we illustrate the effectiveness of the proposed diagnosis method and the control scheme thorough computer simulations.

Analysis on Optimality of Proportional Navigation With Time-Varying Velocity (속력변화를 고려한 비례항법유도의 최적성 해석)

  • Jeon, In-Soo;Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.998-1001
    • /
    • 2009
  • This paper shows that the conventional proportional navigation guidance(PNG) law with a constant navigation gain is an optimal solution strictly also when the velocity is varying during engagement. Especially, PNG with navigation constant, 3, is an optimal solution minimizing a closing velocity weighted induced-drag. While most of previous studies on optimality of PNG were relied on the linear formulation and the constant speed assumption, this study presents more general analysis results on optimality of PNG based on the nonlinear formulation and the time-varying velocity assumption.

Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems (태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Yoo, Su-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

A Study on the thermal analysis techmique in concrete structures by F.E.M (유한요소법을 이용한 콘크리트구조물내의 온도분포해석 기법에 관한 연구)

  • 오병환;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.213-218
    • /
    • 1993
  • F.E.M formulation is carried out in order to determine temperature distribution in the concrete structure. According to this formulation an F.E.M. code is developed, which is capable of silmulating time varying boundary conditions and nonlinear thermal properties.

  • PDF

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Analysis of photothermal response in a two-dimensional semiconducting material thermally excited by pulse heat flux

  • Saeed, Tareq;Abbas, Ibrahim
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • A mathematical model of Lord-Shulman photo-thermal theorem induced by pulse heat flux is presented to study the propagations waves for plasma, thermal and elastic in two-dimensional semiconductor materials. The medium is assumed initially quiescent. By using Laplace-Fourier transforms with the eigenvalue method, the variables are obtained analytically. A semiconductor medium such as silicon is investigated. The displacements, stresses, the carrier density and temperature distributions are calculated numerically and clarified graphically. The outcomes show that thermal relaxation time has varying degrees of effects on the studying fields.

Multiple input describing function analysis of non-classical aileron buzz

  • Zafar, Muhammad I.;Fusi, Francesca;Quaranta, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.203-218
    • /
    • 2017
  • This paper focuses on the computational study of nonlinear effects of unsteady aerodynamics for non-classical aileron buzz. It aims at a comprehensive investigation of the aileron buzz phenomenon under varying flow parameters using the describing function technique with multiple inputs. The limit cycle oscillatory behavior of an asymmetrical airfoil is studied initially using a CFD-based numerical model and direct time marching. Sharp increases in limit cycle amplitude for varying Mach numbers and angles of attack are investigated. An aerodynamic describing function is developed in order to estimate the variation of limit cycle amplitude and frequency with Mach number and angle of attack directly, without time marching. The describing function results are compared to the amplitudes and frequencies predicted by the CFD calculations for validation purposes. Furthermore, a limited sensitivity analysis is presented to demonstrate the potential of the approach for aeroelastic design.

Performance Evaluation of Cochlear Implants Speech Processing Strategy Using Neural Spike Train Decoding (Neural Spike Train Decoding에 기반한 인공와우 어음처리방식 성능평가)

  • Kim, Doo-Hee;Kim, Jin-Ho;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.271-279
    • /
    • 2007
  • We suggest a novel method for the evaluation of cochlear implant (CI) speech processing strategy based on neural spike train decoding. From formant trajectories of input speech and auditory nerve responses responding to the electrical pulse trains generated from a specific CI speech processing strategy, optimal linear decoding filter was obtained, and used to estimate formant trajectory of incoming speech. Performance of a specific strategy is evaluated by comparing true and estimated formant trajectories. We compared a newly-developed strategy rooted from a closer mimicking of auditory periphery using nonlinear time-varying filter, with a conventional linear-filter-based strategy. It was shown that the formant trajectories could be estimated more exactly in the case of the nonlinear time-varying strategy. The superiority was more prominent when background noise level is high, and the spectral characteristic of the background noise was close to that of speech signals. This confirms the superiority observed from other evaluation methods, such as acoustic simulation and spectral analysis.