• 제목/요약/키워드: nonlinear time history

검색결과 506건 처리시간 0.024초

Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.243-262
    • /
    • 2012
  • Nonlinear static analysis as an essential part of performance based design is now widely used especially at design offices because of its simplicity and ability to predict seismic demands on inelastic response of buildings. Since the accuracy of nonlinear static procedures (NSP) to predict seismic demands of buildings affects directly on the entire performance based design procedure, therefore lots of research has been performed on the area of evaluation of these procedures. In this paper, one of the popular NSP, FEMA356, is evaluated and compared with modal pushover analysis. The ability of these procedures to simulate seismic demands in a set of reinforced concrete (RC) buildings is explored with two level of base acceleration through a comparison with benchmark results determined from a set of nonlinear time history analyses. According to the results of this study, the modal pushover analysis procedure estimates seismic demands of buildings like inter story drifts and hinges plastic rotations more accurate than FEMA356 procedure.

비탄성 정적해석을 이용한 점성감쇠기의 설계 (Design of Viscous Dampers Using Nonlinear Static Analysis)

  • 김진구;최현훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.257-264
    • /
    • 2000
  • Nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this regard the nonlinear static analysis is a practical alternative for evaluating the earthquake resisting capacity of a structure. In this study the nonlinear static response of a structure was obtained first, and the equivalent viscous modal damping ratio required to satisfy the performance objective was computed in the capacity spectrum format. Then proper amount of viscous dampers were installed to provide the required damping. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the earthquake time history analysis results, the maximum displacement of the model structure with viscous dampers designed in accordance with the proposed method corresponds well with the target displacements that was used in the beginning of the design process.

  • PDF

교량의 지진해석에서 단순해석의 효과 (Effect of Simplified Methods in Seismic Analysis of Bridges)

  • 최은수
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.729-734
    • /
    • 2002
  • 본 연구에서는 스틸베어링을 가진 교량의 단순해석의 효과를 상부구조의 충돌의 유무에 따라 점검하였다. 교량의 지진해석에서는 비선형 시간이력해석이 일반적으로 사용되지만, AASHTO 등을 포함해서 많은 시방서는 단순해석법을 제시하고 있다. 그러나 AASHTO에서는 충돌에 대한 언급이 없고, 이로 인하여 단순해석의 결과가 비선형 시간이력해석과 차이가 있을 수 있음을 알 수 있다. 그래서 본 연구에서 다경간 단순지지 교량과 다경간 연속 고량, 두 형태의 교량에 대하여 비선형 모델을 개발하고, 이들을 단순해석에 적합하게 선형 모델로 수정하였다. 그리하여 비선형 시간이력해석과 단순 선형해석들의 결과를 비교 검토하였다. 이를 통해서, 단순 선형해석에 있어서 충돌 또는 접촉을 고려하는 것이 비선형 시간이력해석 결과와 가장 근접함을 알 수 있었다.

Nonlinear time history analysis of a pre-stressed concrete containment vessel model under Japan's March 11 earthquake

  • Duan, An;Zhao, Zuo-Zhou;Chen, Ju;Qian, Jia-Ru;Jin, Wei-Liang
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.1-16
    • /
    • 2014
  • To evaluate the behavior of the advanced unbonded pre-stressed concrete containment vessel (UPCCV) for one typical China nuclear power plant under Japan's March 11 earthquake, five nonlinear time history analysis and a nonlinear static analysis of a 1:10 scale UPCCV structure have been carried out with MSC.MARC finite element program. Comparisons between the analytical and experimental results demonstrated that the developed finite element model can predict the earthquake behavior of the UPCCV with fair accuracy. The responses of the 1:10 scale UPCCV subjected to the 11 March 2011 Japan earthquakes recorded at the MYG003 station with the peak ground acceleration (PGA) of 781 gal and at the MYG013 station with the PGA of 982 gal were predicted by the dynamic analysis. Finally, a static analysis was performed to seek the ultimate load carrying capacity for the 1:10 scale UPCCV.

섬유요소를 이용한 교량의 비선형 지진응답해석 (Earthquake Response Analysis of Bridges Using Fiber Element Method)

  • 변순주;임정순
    • 한국방재학회 논문집
    • /
    • 제6권3호
    • /
    • pp.29-35
    • /
    • 2006
  • 교량의 지진응답해석시 단면의 비선형 거동특성에 따른 휨변형을 정밀하게 구현하기 위해 섬유요소를 이용한 해석이 수행되었다. 2주형 다주교각을 섬유요소로 모델링하여 지진하중에 대한 비선형 정적해석을 수행하였으며 소성힌지 영역에서의 파괴 메카니즘을 분석하였다. 비선형 정적해석으로 얻어진 하중-변위 곡선을 이용하여 역량스펙트럼 방법에 의한 지진응답해석을 수행되었다. 또한 교량 전체 시스템을 섬유요소를 이용하여 모델링하고 동일한 응답스펙트럼을 가지는 지진파를 입력하여 비선형 시간이력 해석을 수행되었으며 이는 역량스펙트럼 방법과 유사한 결과를 보인다.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가 (Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures)

  • 이동근;최원호
    • 한국지진공학회논문집
    • /
    • 제5권6호
    • /
    • pp.65-76
    • /
    • 2001
  • 지진하중을 받는 구조물의 시스템 연성요구도 산정과 비선형 지진거동 예측에 대한 연구는 성능에 기초한 내진설계에서 구조물의 내진성능을 평가하는데 있어서 매우 중요한 분야이다. 본 연구에서는 철골 모멘트골조 구조물에 대하여 비선형 시간이력해석에 의한 비선형 지진응답과 시스템 연성요구도를 산정하고, 그 결과를 비선형 정적해석을 이용한 능력스펙트럼법과 비교하였다. 예제구조물에 대한 내진성능평가는 ATC-40에서 제시된 능력스펙트럼법과 본 연구에서 제안한 다자유도 시스템으로부터 직접 산정된 대표응답을 이용한 개선된 능력스펙트럼법과 비교하였다. 본 연구에서 제안된 방법의 정확성과 타당성은 ATC-40에서 제시된 방법과 제안된 방법에 의한 결과를 비선형 시간이력해석에 의한 비선형 지진응답과 비교함으로써 검증하였다.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성 (Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions)

  • 김정한;김민규;최인길
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

이중골조에 대한 비선형 약산법들의 응답특성 (The Response Characteristics of Approximate Nonlinear Methods with RC Dual System)

  • 남영우;강병두;전대한;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF