• Title/Summary/Keyword: nonlinear system modeling

Search Result 715, Processing Time 0.031 seconds

Compensate Voltage Drop for Autotransformer-Fed AC Electric Railroad System with Single-Phase STATCOM (STATCOM을 이용한 교류 전기철도 급전시스템의 전압강하 보상)

  • 정현수;이승혁;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode, and single-phase STATCOM(Static Synchronous Compensator) which has an effect on electric railroad system. An AC electric railroad is rapidly changing single-phase feeding electric power. To avoid voltage fluctuation under single phase loads, electric power should be received from a large source. The system modeling theory is based on the solution of algebraic. The AC electric railroad load model is nonlinear. Therefore this paper is considered nonlinear load using PSCAD/EMTDC. And the proposed modeling method is considered the line self-impedances and mutual-impedances that techniques for the AC electric railroad system modeling analysis, and that single-phase STATCOM can reliably compensate the voltage drop. In the case study, the allowance range of feeding voltage is 22.5∼27.5 kV, AT-fed AC electric railroad system circuit is analyzed by loop equation both normal and extension modes. The simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The results show that single-phase STATCOM can reduce the voltage drop in the feeding circuit and improve the power quality at AC electric railroad system by compensating the reactive power.

Strategic Pricing Framework for Closed Loop Supply Chain with Remanufacturing Process using Nonlinear Fuzzy Function (재 제조 프로세스를 가진 순환 형 SCM에서의 비선형 퍼지 함수 기반 가격 정책 프레임웍)

  • Kim, Jinbae;Kim, Taesung;Lee, Hyunsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.29-37
    • /
    • 2017
  • This papers focuses on remanufacturing processes in a closed loop supply chain. The remanufacturing processes is considered as one of the effective strategies for enterprises' sustainability. For this reason, a lot of companies have attempted to apply remanufacturing related methods to their manufacturing processes. While many research studies focused on the return rate for remanufacturing parts as a control parameter, the relationship with demand certainties has been studied less comparatively. This paper considers a closed loop supply chain environment with remanufacturing processes, where highly fluctuating demands are embedded. While other research studies capture uncertainties using probability theories, highly fluctuating demands are modeled using a fuzzy logic based ambiguity based modeling framework. The previous studies on the remanufacturing have been limited in solving the actual supply chain management situation and issues by analyzing the various situations and variables constituting the supply chain model in a linear relationship. In order to overcome these limitations, this papers considers that the relationship between price and demand is nonlinear. In order to interpret the relationship between demand and price, a new price elasticity of demand is modeled using a fuzzy based nonlinear function and analyzed. This papers contributes to setup and to provide an effective price strategy reflecting highly demand uncertainties in the closed loop supply chain management with remanufacturing processes. Also, this papers present various procedures and analytical methods for constructing accurate parameter and membership functions that deal with extended uncertainty through fuzzy logic system based modeling rather than existing probability distribution based uncertainty modeling.

Composite Adaptive Dual Fuzzy Control of Nonlinear Systems (비선형 시스템의 이원적 합성 적응 퍼지 제어)

  • Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.141-144
    • /
    • 2003
  • A composite adaptive dual fuzzy controller combining the approximate mathematical model, linguistic model description, linguistic control rules and identification modeling error into a single adaptive fuzzy controller is developed for a nonlinear system. It ensures the system output tracks the desired reference value and excites the plant sufficiently for accelerating the parameter estimation process so that the control performances are greatly improved. Using the Lyapunov synthesis approach, proposed controller is analyzed and simulation results verify the effectiveness of the proposed control algorithm.

  • PDF

Parametric Analysis and Design Engine for Tall Building Structures

  • Ho, Goman;Liu, Peng;Liu, Michael
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 2012
  • With the rise in CPU power and the generalization and popularity of computers, engineering practice also changed from hand calculations to 3D computer models, from elastic linear analysis to 3D nonlinear static analysis and 3D nonlinear transient dynamic analysis. Thanks to holistic design approach and current trends in freeform and contemporary architecture, BIM concept is no longer a dream but also a reality. BIM is not just providing a media for better co-ordination but also to shorten the round-the-clock time in updating models to match with other professional disciplines. With the parametric modeling tools, structural information is also linked with BIM system and quickly produces analysis and design results from checking to fabrication. This paper presents a new framework which not just linked the BIM system by means of parametric mean but also create and produce connection FE model and fabrication drawings etc. This framework will facilitate structural engineers to produce well co-ordinate, optimized and safe structures.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities (궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법)

  • Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.

Modeling and Analysis of Solar Array of KOMPSAT (다목적 위성 태양전지 모델링 및 해석)

  • 정규범;이상욱;최완식
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.365-369
    • /
    • 1997
  • In this paper, solar array of KOMPSAT was modeled and analyzed. The modeling results of solar array was achieved by neural algorithm, which is powerful of nonlinear system with a few data sets. The algorithm was analyzed and verified by simulation considering on solar cell data of KOMPSAT. The characteristics VI curves and power generation of solar array are analyzed by using the modeling.

  • PDF

A Constructive Algorithm of Fuzzy Model for Nonlinear System Modeling (비선형 시스템 모델링을 위한 퍼지 모델 구성 알고리즘)

  • Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.648-650
    • /
    • 1998
  • This paper proposes a constructive algorithm for generating the Takagi-Sugeno type fuzzy model through the sequential learning from training data set. The proposed algorithm has a two-stage learning scheme that performs both structure and parameter learning simultaneously. The structure learning constructs fuzzy model using two growth criteria to assign new fuzzy rules for given observation data. The parameter learning adjusts the parameters of existing fuzzy rules using the LMS rule. To evaluate the performance of the proposed fuzzy modeling approach, well-known benchmark is used in simulation and compares it with other modeling approaches.

  • PDF

Design of Incoming Ballistic Missile Tracking Systems Using Extended Robust Kalman Filter (확장 강인 칼만 필터를 이용한 접근 탄도 미사일 추적 시스템 설계)

  • 이현석;나원상;진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.188-188
    • /
    • 2000
  • The most important problem in target tracking can be said to be modeling the tracking system correctly. Although the simple linear dynamic equation for this model has used until now, the satisfactory performance could not be obtained owing to uncertainties of the real systems in the case of designing the filters baged on the dynamic equations. In this paper, we propose the extended robust Kalman filter (ERKF) which can be applied to the real target tracking system with the parameter uncertainties. A nonlinear dynamic equation with parameter uncertainties is used to express the uncertain system model mathematically, and a measurement equation is represented by a nonlinear equation to show data from the radar in a Cartesian coordinate frame. To solve the robust nonlinear filtering problem, we derive the extended robust Kalman filter equation using the Krein space approach and sum quadratic constraint. We show the proposed filter has better performance than the existing extended Kalman filter (EKF) via 3-dimensional target tracking example.

  • PDF

A Study on the System Identification based on Neural Network for Modeling of 5.1. Engines (S.I. 엔진 모델링을 위한 신경회로망 기반의 시스템 식별에 관한 연구)

  • 윤마루;박승범;선우명호;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.29-34
    • /
    • 2002
  • This study presents the process of the continuous-time system identification for unknown nonlinear systems. The Radial Basis Function(RBF) error filtering identification model is introduced at first. This identification scheme includes RBF network to approximate unknown function of nonlinear system which is structured by affine form. The neural network is trained by the adaptive law based on Lyapunov synthesis method. The identification scheme is applied to engine and the performance of RBF error filtering Identification model is verified by the simulation with a three-state engine model. The simulation results have revealed that the values of the estimated function show favorable agreement with the real values of the engine model. The introduced identification scheme can be effectively applied to model-based nonlinear control.