• 제목/요약/키워드: nonlinear structure

검색결과 2,779건 처리시간 0.027초

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.

비선형 시스템 식별을 위한 수정된 elman 신경회로망 구조 (Modified elman neural network structure for nonlinear system identification)

  • 정경권;권성훈;이인재;이정훈;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.917-920
    • /
    • 1998
  • In this paper, we propose a modified elman neural network structure for nonlinear system identification. The proposed structure is that all of network output feed back into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the modified elman neural network structure in the nonlinear system identification.

  • PDF

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

지진하중에 대한 지하철구조물의 비선형 시간영역해석 (Nonlinear Time-Domain Analysis of Underground Subway Structure Subjected to Seismic Loadings)

  • 김재민;이중건
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.163-170
    • /
    • 2001
  • This paper presents results of nonlinear analyses for underground structures including both the soil-structure interaction and nonlinear behavior of concrete material. For this purpose, a hybrid method is employed, in which a dynamic analysis technique for a linear soil-structure interaction system and a general purpose FE program are combined in hybrid and practical manners. A couple of nonlinear analyses are carried out for framed structures in multi-layered half space soil medium. The yielding of concrete structure is considered by a multi-linear stress- strain relationship. The numerical results suggest that ductile design fur the intermediate columns in the underground framed structure is substantially important in aseismic design.

  • PDF

근역지반의 비선형성을 고려한 시간영역 지반-구조물 상호작용 해석기법의 개발 (Soil-Structure Interaction Analysis Method in Time Domain considering Near-Field Nonlinearity)

  • 김문겸;임윤묵;김태욱;박정열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.309-314
    • /
    • 2001
  • In this study, the nonlinear soil structure interaction analysis method based on finite element and boundary element method is developed. In the seismic region, the nonlinearity of near field soil has to be considered for more exact reflection of soil-structure interaction effect. Thus, nonlinear finite element program coupled with boundary elements is developed for nonlinear soil-structure interaction analysis. Using the developed numerical algorithm, the nonlinear soil-structure interaction analysis is performed and responses due to dynamic forces and seismic excitation are investigated. The developed method is verified by comparing with previous studies.

  • PDF

비탄성 정적해석을 이용한 점성감쇠기의 설계 (Design of Viscous Dampers Using Nonlinear Static Analysis)

  • 김진구;최현훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.257-264
    • /
    • 2000
  • Nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this regard the nonlinear static analysis is a practical alternative for evaluating the earthquake resisting capacity of a structure. In this study the nonlinear static response of a structure was obtained first, and the equivalent viscous modal damping ratio required to satisfy the performance objective was computed in the capacity spectrum format. Then proper amount of viscous dampers were installed to provide the required damping. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the earthquake time history analysis results, the maximum displacement of the model structure with viscous dampers designed in accordance with the proposed method corresponds well with the target displacements that was used in the beginning of the design process.

  • PDF

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향 (Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Discrete Representation Method of Nonlinear Time-Delay System in Control

  • Park, Ji-Hyang;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.327-332
    • /
    • 2003
  • A new discretization method for nonlinear system with time-delay is proposed. It is based on the well-known Taylor series expansion and the zero-order hold (ZOH) assumption. We know that a discretization of linear system can be obtained with the ZOH assumption and within the sampling interval. A similar line of thinking is available in nonlinear case. The mathematical structure of the new discretization method is explored and under the structure, the sampled-data representation of nonlinear system including time-delay is computed. Provided that the discrete form of the single input nonlinear system with time-delay is derived, this result is easily extended to nonlinear system with multi-input time-delay. For simplicity two inputs are considered in this study. It is enough to generalize that of multiple inputs. Finally, the time-discretization of non-affine nonlinear system with time-delay is investigated for apply all nonlinear system

  • PDF

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.