• Title/Summary/Keyword: nonlinear structural systems

Search Result 533, Processing Time 0.023 seconds

Seismic Fragility Analysis of Reinforced Concrete Shear Walls Considering Material Deterioration (재료의 열화를 고려한 철근콘크리트 전단벽의 지진 취약도 분석)

  • Myung Kue, Lee;Jang Ho, Park
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • It is necessary to better understand the effect of age-related degradation on the performance of reinforced concrete shear walls in nuclear power plants in order to ensure their structural safety in the event of earthquakes. Therefore, this paper studies seismic fragility of the typical shear wall in nuclear power plants under earthquake excitation Reinforced concrete shear wall is composed of wall, horizontal and vertical flanges. Due to characteristics of its geometry, it is difficult to predict the ultimate behavior of shear wall under earthquake excitation. In this study, for more realistic numerical simulation, the Latin Hyper-Cube (LHC) simulation technique was used to generate uncertain variables for the material properties of concrete shear walls. The effects of crack, characteristics of inelastic behavior of concrete, and loss of cross section were considered in the nonlinear finite element analysis. The effects of aging-related deterioration were investigated on the performance of reinforced concrete shear walls through analysis of undegraded concrete shear walls and degraded concrete shear walls. The resulting seismic fragility curves present the change of performance of concrete shear wall due to age-related degradation.

Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect

  • Ahmed Abdelraheem Farghaly;Denise-Penelope N. Kontoni
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.277-295
    • /
    • 2023
  • Unsymmetrical high-rise buildings (HRBs) subjected to earthquake represent a difficult challenge to structural engineering, especially taking into consideration the effect of soil-structure interaction (SSI). L-shape in plan HRBs suffer from big straining actions when are subjected to an earthquake (in x- or y-direction, or both x- and y- directions). Additionally, the disastrous effect of seismic pounding may appear between two adjacent unsymmetrical HRBs. For two unsymmetrical L-shape in plan HRBs subjected to earthquake in three different direction cases (x, y, or both), including the SSI effect, different methods are investigated to mitigate the seismic pounding and thus protect these types of structures under the earthquake effect. The most effective technique to mitigate the seismic pounding and help in seismically protecting these adjacent HRBs is found herein to be the use of a combination of pounding tuned mass dampers (PTMDs) all over the height (at the connection points) together with tuned mass dampers (TMDs) on the top of both buildings.

Effects of composite and metallic patch on the limit load of pressurized steel pipes elbow with internal defects under opening bending moment

  • Chaaben Arroussi;Azzedine Belalia;Mohammed Hadj Meliani
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.221-242
    • /
    • 2023
  • Internal and external corrosion are common in pressure pipes used in a variety of industries, often resulting in defects that compromise their integrity. This economically and industrially significant problem calls for both preventive and curative technical solutions to guarantee the reliability of these structures. With this in mind, our study focuses on the influence of composite and metallic patch repairs on the limit loads of pipes, particularly elbows, the critical component of piping systems. To this end, we used the nonlinear extended finite element method (X-FEM) to study elbows, a priori corroded on the internal surface of the extrados section, then repaired with composite and metallic patches. In addition, the effect of the geometry of composite materials and metal patches was examined, in particular the effect of their thickness and material on the increase in limit loads of repaired structures. The results obtained provide information on the effectiveness and optimization of patch repair of corroded elbows, with the aim of increasing their service life.

Strength reduction factor spectra based on adaptive damping of SDOF systems

  • Feng Wang;Kexin Yao;Wanzhe Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.219-234
    • /
    • 2024
  • The strength reduction factor spectrum is traditionally obtained from a single-degree-of-freedom (SDOF) system with a constant damping coefficient. However, according to the principle of Rayleigh damping, the damping coefficient matrix of a system changes with the stiffness matrix, and the damping coefficient of an equivalent SDOF system changes with the tangent stiffness coefficient. In view of that, this study proposes an equivalent SDOF system with an adaptive damping coefficient and derives a standardized reaction balance equation. By iteratively adjusting the strength reduction factor, the corresponding spectrum with an equivalent ductility factor is obtained. In addition, the ratio between the strength reduction factor that considers adaptive damping and the traditional strength reduction factor, denoted by η, is determined, and the η-μ-T relationship is obtained. Seismic records of Classes C, D, and E sites are selected as excitations. Moreover, a nonlinear response time-history analysis is performed to establish the relationship between the η and T values for the equivalent ductility factor μ. Further, by exploring the effects of the site class, ductility factor, second-order stiffness coefficient, and period T on the mean value of η, a simplified calculation equation of mean η is derived, and η is used as a modified value for the traditional strength reduction factor R spectrum.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;shariati, Mahdi
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.785-809
    • /
    • 2014
  • In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.

Enhancing the Seismic Performance of Multi-storey Buildings with a Modular Tied Braced Frame System with Added Energy Dissipating Devices

  • Tremblay, R.;Chen, L.;Tirca, L.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • The tied braced frame (TBF) system was developed to achieve uniform seismic inelastic demand along the height of multi-storey eccentrically braced steel frames. A modular tied braced frame (M-TBF) configuration has been recently proposed to reach the same objective while reducing the large axial force demand imposed on the vertical tie members connecting the link beams together in TBFs. M-TBFs may however experience variations in storey drifts at levels where the ties have been removed to form the modules. In this paper, the possibility of reducing the discontinuity in displacement response of a 16-storey M-TBF structure by introducing energy dissipating (ED) devices between the modules is examined. Two M-TBF configurations are investigated: an M-TBF with two 8-storey modules and an M-TBF with four 4-storey modules. Three types of ED devices are studied: friction dampers (FD), buckling restrained bracing (BRB) members and self-centering energy dissipative (SCED) members. The ED devices were sized such that no additional force demand was imposed on the discontinuous tie members. Nonlinear response history analysis showed that all three ED systems can be used to reduce discontinuities in storey drifts of M-TBFs. The BRB members experienced the smallest peak deformations whereas minimum residual deformations were obtained with the SCED devices.

Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-266
    • /
    • 2020
  • In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.

Comparative Analysis of Cable Dome Structures by Reinforcement Effect with Bracing and Fabric (케이블 돔 구조물의 브레이싱 및 막재 보강 효과에 따른 비교분석)

  • Kim, Seung-Deog;Sin, In-A
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • The purpose of this paper is to study comparative analysis of cable dome structures by reinforcement effect with bracing and fabric. Tensegrity systems are stable structures which are reticulated spatial structures composed of compressive straight members, struts, and cables. Tensegrity structures need to be introduced to the initial stress for the self-equilibrated system to have a stable state. In this paper, the effect of reinforcement resisting the in-plan twisting is investigated for the Geiger-type and Zetlin-type models reinforced by bracing and fabric. The effect of initial imperfection is also studied because the structural instabilitity phenomenon of shell-like structures is very sensitive according to the initial condition. We study a more exact analysis concerning the structural instability of tensegrity structures using nonlinear analysis program. Then, two types of tensegrity models will be analysed and compared.

A Relative for Finite Element Nonlinear Structural Analysis (상대절점좌표를 이용한 비선형 유한요소해석법)

  • Kang, Ki-Rang;Cho, Heui-Je;Bae, Dae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF