• Title/Summary/Keyword: nonlinear stress-strain behavior

Search Result 235, Processing Time 0.028 seconds

Estimating model parameters of rockfill materials based on genetic algorithm and strain measurements

  • Li, Shouju;Yu, Shen;Shangguan, Zichang;Wang, Zhiyun
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 2016
  • The hyperbolic stress-strain model has been shown to be valid for modeling nonlinear stress-strain behavior for rockfill materials. The Duncan-Chang nonlinear constitutive model was adopted to characterize the behavior of the modeled rockfill materials in this study. Accurately estimating the model parameters of rockfill materials is a key problem for simulating dam deformations during both the dam construction period and the dam operation period. In order to estimate model parameters, triaxial compression experiments of rockfill materials were performed. Based on a genetic algorithm, the constitutive model parameters of the rockfill material were determined from the triaxial compression experimental data. The investigation results show that the predicted strains provide satisfactory precision when compared with the observed strains and the strains forecasted by a gradient-based optimization algorithm. The effectiveness of the proposed inversion procedure of model parameters was verified by experimental investigation in a laboratory.

The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature (304 스테인리스강의 점소성 특성에 관한 연구)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.101-106
    • /
    • 2007
  • Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

On the Contact Behavior Analysis and New Design of O-ring Seals

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Kim, Young-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.121-122
    • /
    • 2002
  • This paper presents contact behavior of an Polyperfluoroalkoxyethylene(PTFE) ring seals by a non-linear finite element method using the thermomechanical analysis. PTFE elastomer was assumed as odgen model for numerical analysis in FEM commercial code because elastomer has nonlinear behaviour character. The shape effects are investigated for sealing performance of ring seal in boundary conditions which as gas pressure, groove temperature and various O-ring seal models. Also contact stress and equivalent total strain are investicated. An O-ring seals was modeled four shape which are circle, two sunflower and X. The highest contact stress occurs at sunflower-ring seal with groove deapth of 0.35mm. the equivalent total strain of sunflower-ring seal is lower than that of the others under low gas pressure condition but under gas pressure condition over 4Mpa, that of sunflower-ring seal is higher. The calculated FEM results shows that the Sunflower-ring seal with groove depth of 0.35mm has excellent performance compared with other seal models.

  • PDF

Nonlinear analysis of prestressed concrete structures considering slip behavior of tendons

  • Kwak, Hyo-Gyoung;Kim, Jae-Hong;Kim, Sun-Hoon
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.43-64
    • /
    • 2006
  • A tendon model that can effectively be used in finite element analyses of prestressed concrete (PSC) structures with bonded tendons is proposed on the basis of the bond characteristics between a tendon and its surrounding concrete. Since tensile forces between adjacent cracks are transmitted from a tendon to concrete by bond forces, the constitutive law of a bonded tendon stiffened by grouting is different from that of a bare tendon. Accordingly, the apparent yield stress of an embedded tendon is determined from the bond-slip relationship. The definition of the multi-linear average stress-strain relationship is then obtained through a linear interpolation of the stress difference at the post-yielding stage. Unlike in the case of a bonded tendon, on the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. The tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. The validity of the proposed two tendon models is verified through correlation studies between analytical and experimental results for PSC beams and slabs.

A Three-Dimensional Material Nonlinear Analysis of Reinforced Concrete (철근콘크리트의 3차원 재료비선형해석)

  • 박성수;성재표
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • Objection of this study is to present the three-dimensional material nonlinear analysis of reinforced concrete. A concrete is idealized with three-dimensional 16-node solid element including triaxial nonlinear stress-strain behavior, cracking, crushing and strain softening: a steel with three-dimensional 3 node truss element including elastic-plastic behavior with strain hardening. The cracked shear retention factor is introduced to estimate the effective shear modulus con sidering aggregate interlock after c:racking and a modified newton method is used to obtain a nu merical solution. Numerical results in a gauss point is displayed graphically. Numerical examples of Krahl's reinforced concrete beam and Hedgreds shell are selected to compare with the experimental and numerical results.

Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel- (벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프-)

  • Kim, M.S.;Kim, S.R.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF

Development of Stress-Strain Relationship Considering Strength and Age of Concrete (콘크리트의 강도와 재령을 고려한 응력-변형률 관계식의 개발)

  • 오태근;이성태;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.447-456
    • /
    • 2001
  • Many investigators have tried to represent the nonlinear behavior of stress-strain relationship of concrete using mathematical curves. Most of empirical expressions for stress-strain relationship, however, have focused on old age concrete, and were not able to represent well the behavior of concrete at an early age. Where wide understanding on the behavior of concrete from early age to old age is very important in evaluating the durability and service life of concrete structures. In this paper, effect of 5 different strength levels and ages of from 12 hours to 28 days on compressive stress-strain relationship was observed experimentally and analytically. Tests were carried out on $\phi$100${\times}$200mm cylindrical specimens water-cured at 20${\pm}$3$^{\circ}C$. An analytical expression of stress-stain relationship with strength and age was developed using regression analyses on experimental results. For the verification of the proposed model, the model was compared with present and existing experimental data and some existing models. The analysis shows that the proposed model predicts well experimental data and describes well effect of strength and age on stress-strain relationship.

The uniaxial strain test - a simple method for the characterization of porous materials

  • Fiedler, T.;Ochsner, A.;Gracio, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.17-32
    • /
    • 2006
  • The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.

Composed material models for nonlinear behavior of reinforced concrete

  • Dede, Tayfun;Ayvaz, Yusuf
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.303-318
    • /
    • 2013
  • The purpose of this study is to present different composed material models for reinforced concrete structures (RC). For this aim a nonlinear finite element analysis program is coded in MATLAB. This program contains several yield criteria and stress-strain relationships for compression and tension behavior of concrete. In this study, the well-known criteria, Drucker-Prager, von Mises, Mohr Coulomb, Tresca, and two new criteria, Hsieh-Ting-Chen and Bresler-Pister, are taken into account. It is concluded that the coded program, the new yield criteria, and the models considered can be effectively used in the nonlinear analysis of reinforced concrete beams.

The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test (표준압밀시험에 의한 점토의 초기탄성계수 산정)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.