• 제목/요약/키워드: nonlinear strain energy density

검색결과 17건 처리시간 0.04초

Criterion for judging seismic failure of suspen-domes based on strain energy density

  • Zhang, Ming;Parke, Gerry;Tian, Shixuan;Huang, Yanxia;Zhou, Guangchun
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper the strain energy density (SED) model is used to analyze the seismic behavior of suspen-domes and a new criterion is established for judging the seismic failure based on a characteristic point in the SED model. Firstly, a nonlinear time-history response analysis was carried out using the finite-element package ANSYS for typical suspen-domes subjected to different ground motions. The seismic responses including nodal displacements, ratios of yielding members, strain energy density and structural maximum deformation energy were extracted corresponding to the increasing peak ground acceleration (A). Secondly, the SED sum ($I_d$) was calculated which revealed that the $I_d-A$ curve exhibited a relatively large change (called a characteristic point) at a certain value of A with a very small load increment after the structures entered the elastic-plastic state. Thirdly, a SED criterion is proposed to judge the seismic failure load based on the characteristic point. Subsequently, the case study verifies the characteristic point and the proposed SED criterion. Finally, this paper describes the unity and application of the SED criterion. The SED method may open a new way for structural appraisal and the SED criterion might give a unified criterion for predicting the failure loads of various structures subjected to dynamic loads.

비선형 차체프레임구조물의 민감도해석 및 최적화 (Sensitivity Analysis and Optimization of Nonlinear Vehicle Frame Structures)

  • 원종진;이종선
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2833-2842
    • /
    • 1996
  • This paper is to practice optimal rigidity design by the strain energy density estimation method for static buckling and sizing design sensitivity analysis for dynamic buckling of a nonlinear vehicle frame structure from those results. Using these sizing design sensitivity resutls, an optimization of a nonlinear vehicle frame structure with dynamic buckling constraint is carrried out with the graient projection method.

비선형 거동을 고려한 척추 인공추간판 보철물의 최적설계 (Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior)

  • 권상영;김형태;하성규
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.234-242
    • /
    • 2002
  • A shape optimal design of synthetic intervertebral disc prosthesis is performed using a three-dimensional finite element method. Geometric parameters are introduced to model the cross-sectional geometry of the intervertebral disc. It is assumed that the total strain energy in the intact intervertebral disc is minimized under the normal load conditions, as often cited in other references. To calculate the stain energy density, both the nonlinear material properties and the large deformations are taken into account. The design variables of the annulus fiber angle and the area ratio of the nucleus pulposus are calculated as 31°and 30%, respectively, which complies well with the intact disc. Thus, the same optimization procedure is applied to the design of the synthetic intervertebral disc prosthesis whose material properties are different from the intact disc. For the given synthetic material properties, the values of 67°and 24% for the fiber angle and the area ratio are obtained.

고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구 (Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components)

  • 김완두;김완수;김동진;우창수;이학주
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

고체 평판의 비선형 순수굽힘변형에 대한 수학적 정해 (A Closed Form Nonlinear Solution for Large Pure Bending Deformation of Solid Plate)

  • Youngjoo Kwon
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.220-225
    • /
    • 1998
  • 압축성 초탄성 평판의 순수굽힘에 대한 비선형 변형해석의 수학적 정해가 본 논문에 구해져 있다. 이차원 평면 변형도 상태가 해석을 위하여 가정되었으며, 비선형 순수굽힘 변형해석결과는 고전적인 선형 순수굽힘 변형해석결과와 비교되었다. 고전적인 선형굽힘 결과와는 다르게 비선형 순수굽힘 상태에서는 반경방향응력은 영이 아니며 또한 각방향응력도 선형 상태가 아닌 것으로 규명되었다.

  • PDF

Novel nonlinear stiffness parameters and constitutive curves for concrete

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Hejazi, Moheldeen A.
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.539-550
    • /
    • 2018
  • Concrete is highly non-linear material which is originating from the transition zone in the form of micro-cracks, governs material response under various loadings. In this paper, the constitutive models published by many researchers have been used to generate novel stiffness parameters and constitutive curves for concrete. Following such linear material formulations, where the energy is conservative during the curvature, and a nonlinear contribution to the concrete has been made and investigated. In which, nonlinear concrete elastic modulus modeling has been developed that is capable-of representing concrete elasticity for grades ranging from 10 to 140 MPa. Thus, covering the grades range of concrete up to the ultra-high strength concrete, and replacing many concrete models that are valid for narrow ranges of concrete strength grades. This has been followed by the introduction of the nonlinear Hooke's law for the concrete material through the replacement of the Young constant modulus with the nonlinear modulus. In addition, the concept of concrete elasticity index (${\varphi}$) has been proposed and this factor has been introduced to account for the degradation of concrete stiffness in compression under increased loading as well as the multi-stages micro-cracking behavior of concrete under uniaxial compression. Finally, a sub-routine artificial neural network model has been developed to capture the concrete behavior that has been introduced to facilitate the prediction of concrete properties under increased loading.

액체금속로용 면진베어링의 구조해석 (Structural Analysis of Seismic Isolation Bearings for Liquid Metal Reactor)

  • 김종인;유봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.186-192
    • /
    • 1993
  • Proto-type seismic isolation rubber bearings are investigated through nonlinear hyperelasticity finite elements using the ANSYS general purpose structural analysis code. The purpose of the analysis was to determine the maximum horizontal strain range which can be obtained with a 250KN hydraulic actuator. A Mooney-Rivlin strain energy density function was used as a constitutive law for rubber. The results are compared with the test data available in the literature and found to in good agreement only in the higy strain range. The analysis results can be used with conservatism to predict the necessary force required to a specified displacement such as the purpose of this analysis. However, more precise constitutive model will be required to simulate the bearing behavior with accuracy in the mid-range strain.

  • PDF

Nonlinear dynamic response and its control of rubber components with piezoelectric patches/layers using finite element method

  • Manna, M.C.;Bhattacharyya, R.;Sheikh, A.H.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.889-903
    • /
    • 2010
  • Idea of using piezoelectric materials with flexible structures made of rubber-like materials is quite novel. In this study a non-linear finite element model based on updated Lagrangian (UL) approach has been developed for dynamic response and its control of rubber-elastic material with surface-bonded PVDF patches/layers. A compressible stain energy density function has been used for the modeling of the rubber component. The results obtained are compared with available analytical solutions and other published results in some cases. Some results are reported as new results which will be useful for future references since the number of published results is not sufficient.

온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석 (A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing)

  • 김기태;양훈철;김종광
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

타이어 고무배합물의 초탄성을 고려한 레이디얼 타이어의 팽창에 관한 유한요소해석 (F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire)

  • 김용우;김종국
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.125-134
    • /
    • 2003
  • In this study, Mooney-Rivlin 1st model and Mooney-Rivlin 3rd model are adopted as strain energy density functions of the rubber compounds of a radial tire. It is shown that the FE analysis using Mooney-Rivlin models for rubber compounds may provide good approximations by employing the appropriate strain range of experimental stress-strain data in a way to describe the stress-strain relationship accurately. Especially, Mooney-Rivlin 3rd model gives an accurate stress-strain relationship regardless of the fitting strain range used within the strain of 100%. The static nonlinear FE analysis of a tire inflation is performed by employing an axisymmetric model, which shows that the outside shapes of the tire before and after inflating the tire agree well with those of the real tire. Additionally, the deformations at crown center and turning point on sidewall, distribution of belt cord force, interlaminar shear strain are predicted in terms of variation of belt cord angle which is known as the most influential factor in inflation behavior of a tire.