• Title/Summary/Keyword: nonlinear spring elements

Search Result 64, Processing Time 0.025 seconds

Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads (반복하중을 받는 대형 콘크리트 판구조의 비선형 해석)

  • 정봉오;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

Stress Analysis of a Coil Spring with Nonlinear Section (이형단면 코일 스프링의 응력해석)

  • 이인혁;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1831-1838
    • /
    • 1991
  • The deformation of coil spring with noncircular section, which is used in the engine valve of automobiles under the applied load is usually accompanied by sectional warping and additional displacements of geometric center. In this study the isoparametric beam element formulations are modified and expanded to consider these two effects. To verify these formulations, simple torsion tests are made and compared with the analysis results. For the case of the zero-pitch spring, the stress distributions of oval and circular section are coincided with those of the analysis using the solid elements. Cylindrical coil springs with oval section are analyzed. These results are agreed with those of Nagaya.

A Study on the Large Deflection of Flat Spring Subjected to Follower Load by a Rotating Pin (회전 핀의 종동 하중에 따른 박판 스프링의 대변형에 대한 연구)

  • Chung, Il-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1352-1358
    • /
    • 2004
  • The mechanical spring is one of widely used machine elements. Among various kinds, flat-type spring loaded by a rotating pin was studied. A flat spring was simplified to a cantilever beam, and numerical analysis was attempted. Since the loading pin rotates about a separate axis from the fixed spring or vice versa, the location, direction, and magnitude of the contact force including normal contact and friction loads vary accordingly. Meanwhile, the spring is deformed substantially as the relative motion progresses. Therefore, this problem needs to be formulated taking the follower loading characteristics and geometrical non-linearity into account. Derived nonlinear differential equation was solved to yield the spring deflection, contact force and the torque to rotate the pin, and the result was compared with a finite element solution. Also, the influences of principal design parameters were studied. The proposed methodology is expected to be useful for the design of pin-loaded flat spring and the prevention of mechanical failures in the form of yielding or fatigue failure of spring or severe wear of the components.

Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method (경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.

Dynamic Analysis of Mooring Dolphin System Considering Soil Properties (지반의 강성특성을 고려한 지반-돌핀구조계의 동적해석)

  • Yi, Jin-Hak;Oh, Se-Boong;Yun, Chung-Bang;Hong, Sup;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.19-30
    • /
    • 1998
  • In this paper, the dynamic analysis of a dolphin system for mooring a floating structure such as barge mounted plant is studied. The characteristics of the soil-pile system are simplified by a set of equivalent spring elements at the mudline. To evaluate the equivalent spring constants, the finite difference method is used. Since the characteristics of the soil-pile system are nonlinear in case of soft foundation, the nonlinear dynamic analysis technique is needed. The Newmark $beta$ method incorporating the modified Newton-Raphson method(initial stiffness method) is used. A numerical analysis is performed on two mooring dolphin systems on soft foundation and rock foundation. In case of the rock foundation, the characteristics are found to be nearly linear, so the linear dynamic analysis may be sufficient to consider the foundation effect. But in case of soft foundation, the non-linearity of the foundation appears to be very signigicant, so the nonlinear dynamic analysis si needed.

  • PDF

Nonlinear Vibration Analysis of Thin Perforated Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.639-647
    • /
    • 2002
  • The nonlinear vibration of the thin perforated plate is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the tension plate is obtained from dynamic condensation for the mass and stiffness matrices. Tension wire is modeled using the lumped parameter method to effectively describe its contact interactions with the plate. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. From the evaluation of the computational accuracy and computation time for the deduced impact stiffness and damping coefficient, we determined proper values for the simulation works, accounting for the computational accuracy as well as the computational efficiency. Finally we discussed the results of nonlinear nitration analysis for variations of their design parameters.

The Rheological and Mechanical Model for Relaxation Spectra of Polydisperse Polymers

  • Kim, Nam Jeong;Kim, Eung Ryul;Hahn Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.413-419
    • /
    • 1992
  • The theoretical equation for the relaxation spectrum of nonlinear viscoelastic polymeric material was derived from the Ree-Eyring and Maxwell non-Newtonian model. This model consists of infinite number of hyperbolic sine law Maxwell elements coupled in parallel plus a spring without a dashpot. Infinite number of nonlinear viscoelastic Maxwell elements can be used by specifying distribution of relaxation times, hole volumes, molecular weights, crystallite size and conformational size, etc. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The relaxation spectra of nylon 6 filament fibers in various electrolytic solutions were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The determination of relaxation spectra was performed from computer calculation.

Hysteretic Characteristics of Leaf Springs in Commercial Vehicles (상용차량용 판스프링의 이력특성 구현)

  • Moon, Won-Ki;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Multi-leaf springs are widely used for a major suspension component in many commercial vehicles. The modeling technique of multi-leaf springs is one of the most difficult problems in suspension modeling as the elements have complicated nonlinear characteristics such as a hysteresis behavior due to the friction. In this paper, hysteretic characteristics with the static and dynamic test are modeled and are simulated with three links and joints in MSC.ADAMS. Simulation results showed good agreements with test results. Using this methodology, it is expected that dynamic characteristics of suspension system with multi-leaf spring can be more accurately evaluated in vehicle dynamics.

A couple Voronoi-RBSM modeling strategy for RC structures

  • Binbin Gong;Hao Li
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.239-250
    • /
    • 2024
  • With the aim to provide better predication about fracture behavior, a numerical simulating strategy based on the rigid spring model is proposed for reinforced concrete (RC) structures in this study. According to the proposed strategy, concrete is partitioned into a series of irregular rigid blocks based on the Voronoi diagram, which are connected by interface springs. Steel bars are simulated by bar elements, and the bond slip element is defined at bar element nodes to describe the interaction between reinforcement and concrete. A concrete damage evolution model based on the separation criterion is adopted to describe the weakening process of interface spring between adjacent blocks, while a nonlinear bond slip model is introduced to simulate the synergy behaviour of reinforced steel bars and concrete. In the damage evolution model of concrete, the influence of compressive stress perpendicular to the interface on the shear strength is considered. To check the effectiveness and applicability of the proposed modelling, experimental and numerical studies about a simply-supported RC beam and the two-notched concrete plates in Nooru-Mohamed's experiment are conducted, and the grid sensitivity are investigated.

The Analytical Model for the Reinforcement Bar Connection in Grout-Filled Steel Pipe Sleeve (모르터 충전 강관 슬리브를 이용한 철근 이음의 해석 모델)

  • 황재호;이용재;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.519-526
    • /
    • 1997
  • The purpose of this study is to develop the analytical model for the reinforcement bar connection in group-filled steel pipe sleeve, which consists of beam elements for the reinforcement bar and shell elements for the sleeve and the mortar and spring elements for the bond stress-slip relationship. In the reinforcement bar connection using grout-filled steel pipe sleeve, the major variables are the bond stiffness between reinforcement bar and mortar($K_1$) and between sleeve and mortar($K_2$). It is nearly difficult to predict the exact bond stiffness with the experimental results. Therefore, The linearly elastic analyses using ABAQUS, FEM package show the validity of the mathematical equations for the bond stiffness and the choice of material elements in this paper. To predict the behaviour between yield and ultimate tensile strength, the nonlinear analyses must be performed henceforth.

  • PDF