DOI QR코드

DOI QR Code

A couple Voronoi-RBSM modeling strategy for RC structures

  • Binbin Gong (College of Civil Engineering, Hunan City University) ;
  • Hao Li (CCCC Third Highway Engineering Co., Ltd)
  • Received : 2023.12.07
  • Accepted : 2024.07.08
  • Published : 2024.08.10

Abstract

With the aim to provide better predication about fracture behavior, a numerical simulating strategy based on the rigid spring model is proposed for reinforced concrete (RC) structures in this study. According to the proposed strategy, concrete is partitioned into a series of irregular rigid blocks based on the Voronoi diagram, which are connected by interface springs. Steel bars are simulated by bar elements, and the bond slip element is defined at bar element nodes to describe the interaction between reinforcement and concrete. A concrete damage evolution model based on the separation criterion is adopted to describe the weakening process of interface spring between adjacent blocks, while a nonlinear bond slip model is introduced to simulate the synergy behaviour of reinforced steel bars and concrete. In the damage evolution model of concrete, the influence of compressive stress perpendicular to the interface on the shear strength is considered. To check the effectiveness and applicability of the proposed modelling, experimental and numerical studies about a simply-supported RC beam and the two-notched concrete plates in Nooru-Mohamed's experiment are conducted, and the grid sensitivity are investigated.

Keywords

Acknowledgement

The research described in this paper is financially supported by the Natural Science Foundation of Hunan Province (2021JJ50143). The supports are gratefully acknowledged.

References

  1. Amini, M.S., Sarfarazi, V. and Babanouri, N. (2021), "Influence of non-persistent joint sets on the failure behavior of concrete under uniaxial compression test", Comput. Concrete, 28(3), 289-309. https://doi.org/10.12989/cac.2021.28.3.289.
  2. Avadh, K., Jiradilok, P., Bolander, J.E. and Nagai, K. (2021), "Mesoscale simulation of pull-out performance for corroded reinforcement with stirrup confinement in concrete by 3D RBSM", Cement Concrete Compos., 116, 103895. https://doi.org/10.1016/j.cemconcomp.2020.103895.
  3. Bakhti, R., Benahmed, B., Laib, A. and Alfach, M.T. (2022), "New approach for computing damage parameters evolution in plastic damage model for concrete", Case Stud. Constr. Mater., 16, e00834. https://doi.org/10.1016/j.cscm.2021.e00834.
  4. Ballard, M.K., Amici, R., Shankar, V., Ferguson, L.A., Braginsky, M. and Kirby, R.M. (2022), "Towards an extrinsic, GG-XFEM approach based on hierarchical enrichments for modeling progressive fracture", Comput. Meth. Appl. Mech. Eng., 388, 114221. https://doi.org/10.1016/j.cma.2021.114221.
  5. Casolo, S. (2021), "Macroscale modeling of the orthotropic shear damage in the dynamics of masonry towers by RBSM", Eng. Fail. Anal., 130, 105744. https://doi.org/10.1016/j.engfailanal.2021.105744.
  6. Cervenka, V. (2002), "Computer simulation of failure of concrete structures for practice", 1st fib Congress, 289-304.
  7. Cervenka, V. and Margoldova, J. (1995), "Tension stiffening effect in smeared crack model", Proc. of the ASCE EMD Specialty Conference, University of Colorado Boulder, USA.
  8. Cervenka, V., Cervenka, J. and Kadlec, L. (2018), "Model uncertainties in numerical simulations of reinforced concrete structure", Struct. Concrete, 19(6), 2004-2016. https://doi.org/10.1002/suco.201700287.
  9. Comite Euro-international du Beton (1990), CEB-FIB Model Code 1990 First Draft, CEB, Pair, France.
  10. Gedik, Y.H., Nakamura, H., Yamamoto, Y. and Kunieda, M. (2011), "Evaluation of three-dimensional effects in short deep bemas using a rigid-body-spring-model", Cement Concrete Compos., 33(9), 978-991. https://doi.org/10.1016/j.cemconcomp.2011.06.004.
  11. Gribniak, V., Cervenka, V. and Kaklauskas, G. (2013), "Deflection prediction of reinforced concrete beams by design codes and computer simulation", Eng. Struct., 56, 2175-2186. https://doi.org/10.1016/j.engstruct.2013.08.045.
  12. Li, B., Jiang, J., Xiong, H., Zhan, Y., Wu, Z. and Cunningham, L. S. (2021), "Improved concrete plastic-damage model for FRP-confined concrete based on true tri-axial experiment", Compos. Struct., 269, 114051. https://doi.org/10.1016/j.compstruct.2021.114051.
  13. Lu, X., Ridha, M., Tan, V.B.C. and Tay, T.E. (2019), "Adaptive discrete-smeared crack (A-DiSC) model for multi-scale progressive damage in composites", Compos. Part A: Appl. Sci. Manuf., 125, 105513. https://doi.org/10.1016/j.compositesa.2019.105513.
  14. Markou, G. and Bakas, N.P. (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis", Comput. Concrete, 28(6), 433-447. https://doi.org/10.12989/cac.2021.28.6.533.
  15. Mora, D.F. and Niffenegger, M. (2022), "A new simulation approach for crack initiation, propagation and arrest in hollow cylinders under thermal shock based on XFEM", Nucl. Eng. Des., 386, 111582. https://doi.org/10.1016/j.nucengdes.2021.111582.
  16. Mota, M.T., Fairbairn, E.M., Ribeiro, F.L., Rossi, P., Tailhan, J.L., Andrade, H.C. and Rita, M.R. (2021), "A 3D probabilistic model for explicit cracking of concrete", Comput. Concrete, 27(6), 549-562. https://doi.org/10.12989/cac.2021.27.6.549.
  17. Ngo, D. and Scordelis, A., (1967), "Nonlinear analysis of reinforced concrete beams", J. Am. Concrete Inst., 64(3), 152-163.
  18. Nooru-Mohamed, M.B. (1993), "Mixed-mode fracture of concrete: An experimental approach".
  19. Pham, D.C., Cui, X., Ren, X. and Lua, J. (2019), "A discrete crack informed 3D continuum damage model and its application for delamination migration in composite laminates", Compos. Part B: Eng., 165, 554-562. https://doi.org/10.1016/j.compositesb.2019.02.045.
  20. Rimkus, A., Cervenka, V., Gribniak, V. and Cervenka, J. (2020), "Uncertainty of the smeared crack model applied to RC beams", Eng. Fract. Mech., 233, 107088. https://doi.org/10.1016/j.engfracmech.2020.107088.
  21. Sarfarazi, V., Abharian, S., Babanouri, N. and Salari, R.H. (2021), "Interaction between a hole and a crack in different layouts: Experimental and numerical study on concrete", Comput. Concrete, 28(4), 415-432. https://doi.org/10.12989/cac.2021.28.4.415.
  22. Sarfarazi, V., Haeri, H., Shemirani, A.B., Zhu, Z. and Marji, M.F. (2018), "Experimental and numerical simulating of the crack separation on the tensile strength of concrete", Struct. Eng. Mech., 66(5), 569-582. https://doi.org/10.12989/sem.2018.66.5.569.
  23. Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407. https://doi.org/10.12989/cac.2022.29.6.407.
  24. Shi, F., Wang, D. and Yang, Q. (2022), "An XFEM-based numerical strategy to model three-dimensional fracture propagation regarding crack front segmentation", Theor. Appl. Fract. Mech., 118, 103250. https://doi.org/10.1016/j.tafmec.2022.103250.
  25. Shu, X., Luo, Y., Zhao, C., Dai, Z., Zhong, X. and Zhang, T. (2022), "Experimental study on the shear failure model for concrete under compression-shear loading", Comput. Concrete, 29(2), 81-92. https://doi.org/10.12989/cac.2022.29.2.081.
  26. Wang, L. and Bao, J. (2015), "Mesoscale computational simulation of the mechanical response of reinforced concrete members", Comput. Concrete, 15(2), 305-319. https://doi.org/10.12989/cac.2015.15.2.305.
  27. Wang, Z., Zhang, D., Gong, F., Mehrpay, S. and Ueda, T. (2019), "Mesoscale simulation of bond behaviors between concrete and reinforcement under the effect of frost damage with axisymmetric rigid body spring model", Constr. Build. Mater., 215, 886-897. https://doi.org/10.1016/j.conbuildmat.2019.04.232.
  28. Wu, J.Y. and Yao, J.R. (2022), "A model scaling approach for fracture and size effect simulations in solids: Cohesive zone, smeared crack bond and phase-field modes", Comput. Meth. Appl. Mech. Eng., 400, 115519. https://doi.org/10.1016/j.cma.2022.115519.
  29. Yin, A., Yang, X., Zhang, C., Zeng, G. and Yang, Z. (2015), "Three-dimensional heterogeneous fracture simulation of asphalt mixture under uniaxial tension with cohesive crack model", Constr. Build. Mater., 76, 103-117. https://doi.org/10.1016/j.conbuildmat.2014.11.065.
  30. Zhao, C., Shi, Z. and Zhong, X. (2021), "A proposal for an approach for meso scale modeling for concrete based on rigid body spring model", Comput. Concrete, 27(3), 283-295. https://doi.org/10.12989/cac.2021.27.3.283.
  31. Zhi, J. and Tay, T.E. (2020), "Interrogating failure mechanisms of notched composites through a discrete crack modeling approach", Compos. Sci. Technol., 196, 108203. https://doi.org/10.1016/j.compscitech.2020.108203.
  32. Zhong, X., Zhao, C., Liu, B., Shu, X. and Shen, M. (2018), "A 3D RBSM for simulating the failure process of RC structures", Struct. Eng. Mech., 65(3), 291-302. https://doi.org/10.12989/sem.2018.65.3.291.