• Title/Summary/Keyword: nonlinear principal component analysis

Search Result 56, Processing Time 0.026 seconds

Data Visualization using Linear and Non-linear Dimensionality Reduction Methods

  • Kim, Junsuk;Youn, Joosang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.21-26
    • /
    • 2018
  • As the large amount of data can be efficiently stored, the methods extracting meaningful features from big data has become important. Especially, the techniques of converting high- to low-dimensional data are crucial for the 'Data visualization'. In this study, principal component analysis (PCA; linear dimensionality reduction technique) and Isomap (non-linear dimensionality reduction technique) are introduced and applied to neural big data obtained by the functional magnetic resonance imaging (fMRI). First, we investigate how much the physical properties of stimuli are maintained after the dimensionality reduction processes. We moreover compared the amount of residual variance to quantitatively compare the amount of information that was not explained. As result, the dimensionality reduction using Isomap contains more information than the principal component analysis. Our results demonstrate that it is necessary to consider not only linear but also nonlinear characteristics in the big data analysis.

Evaluation of Slope Condition using Principal Component Analysis (주성분분석법을 이용한 사면 상태 평가)

  • Jung, Soo-Jung;Kim, Tae-Hyung;Kang, Ki-Min;Lee, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.416-422
    • /
    • 2010
  • Estimating condition of geotechnical structures are difficult because of nonlinear time dependency and seasonal effects. Measuring data of structure failure is highly variable in time and space, and a unique approach cannot be defined to model structure movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, this method is advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured.

  • PDF

B1ind Source Separation by PCA (주성분 분석을 이용한 블라인드 신호 분리)

  • 이혜경;최승진;방승양
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.304-306
    • /
    • 2001
  • Various methods for blind source separation (BSS) are based on independent component analysis (ICA) which can be viewed as a nonlinear extension of principal component analysis (PCA). Most existing ICA methods require certain nonlinear functions, the shapes of which depend on the probability distributions of sources (which is not known in advance), whereas FCA is a linear learning method based on only second-order statistics. In this paper we show how BSS can be achieved by FCA, provided that sources are spatially uncorrelated but temporally correlated.

  • PDF

Non-linear PLS based on non-linear principal component analysis and neural network (비선형 주성분해석과 신경망에 기반한 비선형 PLS)

  • 손정현;정신호;송상옥;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.394-394
    • /
    • 2000
  • This Paper proposes a new nonlinear partial least square method that extends the linear PLS. Proposed nonlinear PLS uses self-organizing feature map as PLS outer relation and multilayer neural network as PLS inner regression method.

  • PDF

Study of Nonlinear Feature Extraction for Faults Diagnosis of Rotating Machinery (회전기계의 결함진단을 위한 비선형 특징 추출 방법의 연구)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.127-130
    • /
    • 2005
  • There are many methods in feature extraction have been developed. Recently, principal components analysis (PCA) and independent components analysis (ICA) is introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively In this paper, the feasibility of using nonlinear feature extraction will be studied. This method will employ the PCA and ICA procedure and adopt the kernel trick to nonlinearly map the data into a feature space. The goal of this study is to seek effectively useful feature for faults classification.

  • PDF

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Identifying Causes of Industrial Process Faults Using Nonlinear Statistical Approach (공정 이상원인의 비선형 통계적 방법을 통한 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3779-3784
    • /
    • 2012
  • Real-time process monitoring and diagnosis of industrial processes is one of important operational tasks for quality and safety reasons. The objective of fault diagnosis or identification is to find process variables responsible for causing a specific fault in the process. This helps process operators to investigate root causes more effectively. This work assesses the applicability of combining a nonlinear statistical technique of kernel Fisher discriminant analysis with a preprocessing method as a tool of on-line fault identification. To compare its performance to existing linear principal component analysis (PCA) identification scheme, a case study on a benchmark process was performed to show that the fault identification scheme produced more reliable diagnosis results than linear method.

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

Predicting concrete properties using neural networks (NN) with principal component analysis (PCA) technique

  • Boukhatem, B.;Kenai, S.;Hamou, A.T.;Ziou, Dj.;Ghrici, M.
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.557-573
    • /
    • 2012
  • This paper discusses the combined application of two different techniques, Neural Networks (NN) and Principal Component Analysis (PCA), for improved prediction of concrete properties. The combination of these approaches allowed the development of six neural networks models for predicting slump and compressive strength of concrete with mineral additives such as blast furnace slag, fly ash and silica fume. The Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian regularization was used in all these models. They are produced to implement the complex nonlinear relationship between the inputs and the output of the network. They are also established through the incorporation of a huge experimental database on concrete organized in the form Mix-Property. Thus, the data comprising the concrete mixtures are much correlated to each others. The PCA is proposed for the compression and the elimination of the correlation between these data. After applying the PCA, the uncorrelated data were used to train the six models. The predictive results of these models were compared with the actual experimental trials. The results showed that the elimination of the correlation between the input parameters using PCA improved the predictive generalisation performance models with smaller architectures and dimensionality reduction. This study showed also that using the developed models for numerical investigations on the parameters affecting the properties of concrete is promising.