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abstract

Various methods for blind source separation (BSS)

are based on independent component analysis (ICA)

which can be viewed as a nonlinear extension of principal component analysis (PCA). Most existing ICA

methods require certain nonlinear functions, the shapes of which depend on the probability distributions of

sources (which is not known in advance), whereas PCA is a linear learning method based on only

second-order statistics. In this paper we show how BSS can be achieved by PCA, provided that sources

are spatially uncorrelated but temporally correlated.

1. Introduction

Blind source separation (BSS) is a statistical
method which aims at recovering unknown sources
from their linear instantaneous mixtures without any
prior knowledge of the mixing matrix nor sources.
Most existing methods for BSS are based on ICA.
These methods exploit the higher-order statistical
structure of the data which is statistically
independent[1]  either  implicitty or  explicitly.
Alternatively the task of BSS can be achieved by the
nonlinear PCA[2] where certain nonlinear functions
employed in the standard PCA according to the
probability distributions of sources which are unknown
in advance. These methods are also based on
higher-order statistics.

In this paper we show that the standard PCA can
be applied to the task of BSS, provided that sources
are spatially uncorrelated but temporally correlated.
The resulting method is based on only second-order
statistics, so it avoids nonlinear function. Moreover,
the method is also able to separate the mixtures of
several colored Gaussian sources, whereas the ICA
method can not.

2. Problem Formulation

In the simpliest form of BSS, it is assumed that the
n-dimensional observation vector x()= [ x, () x,(H] 7
is generated by

x(H=As(d), 1
where Ae R™" is called the mixing matrix, s() is the
n~dimensional vector whose elements are called

soureces.

The task of BSS is to recover source vector s(f) up
to its possibly scaled and re-ordered version. That is,
the estimate of source vector, 3(§ satisfy 5(f)=PA s()
where P is some permutation matrix and 4 is some
nonsingular diagonal matrix. The transformation by
generalized permutation matrix, PA is referred to as a
transparent transformation. In other words, the task is to
build a linear transformation W {demixing matrix) such
that WA= PA is satisfied.

Throughout this paper the following assumptions
are made:

ASI The mixing matrix A is of full rank.

AS2 Sources are spatially uncorrelated but temporally

correlated stochastic signals with zero mean and unit

variance, i.e.,

E{ s{H sjt—0}= r (D &y, Vr,

L,ji=1,...n,

where 8; is the Kronecker delta equal to 1 for i=j,

otherwise it is zero, »;(9) is the arbitrary variable,

and E{ -} denotes the statistical average operator.

(2)

3. Proposed Methods

This section describes our method of BSS based on
PCA with brief review of PCA and whitening.

3.1 Principal Component Analysis(PCA)
The PCA is a classical multivariate data analysis
method that is useful in linear feature extraction and

data compression. These methods find a linear
transformation y=Hx, where the row vectors of H
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correspond to the normalized orthogonal eigenvectors
of the data covariance matrix.

Cne simple approach to PCA is to use singular
value decomposition(SVD). Let us denote the data
covariance matrix by R,(0)=E{ (8 z (§}. Then the
SVD of it gives

R.()=UDUT, (3)
where U is the eigenvector matrix(i.e.,, modal matrix)
and D is the diagonal matrix whose diagonal elements
correspond to the eigenvalues of R,(0). Then the
linear transformation H in PCA is given by

H=U". (4)

Adaptive algorithms for PCA are also proposed such

as QOja’s subspace rule{3], GHA[4], and APEXI5].

3.2 Whitening

The task of whitening is to find a linear
transformation y=Vx such that E{ 8 vy (8)=1I
where Je R™" is the identity matrix. In other words,
the whitening aims at eliminating cross-correlations
as well as normalizing the variance to be unity. The

transformation V= D_~2L UT=R, %(0) follows from the
decomposition in (3).

It can also be performed in adaptive fashion such
as the global decorrelation rule[6].

3.3 BSS Based PCA

The data vector x(#) is first whitened by a linear

transformation V= 0% U™ Denote the whitened
vector by 2(=V x(). Then the whitened data vector
z(#) has the form
z(f) = Bs(h), 5)
where B= VA is an orthogonal mixing matrix since
Ezp 2" ())=1
Let us consider the signal ®# generated by
y= 2H+ z(t—1). (6)
The correlation matrix of w9 is
R,(0=E{[ 2D+ 2(t-D] [ (d+ 2(t~D]7)
=2I+ R, ()+ R I(1), @)
where R.(1) is the time-delayed correlation matrix
defined by R,(1)=Elz(d 27 (+—1)}.
Since the correlation matrix R,(0) is symmetric, it
has the following eigen-decomposition

R,(0)= U, D, U (8)
Note that from (5) and (6) we have
R,(0)=B{2I+ R ()+ R [(1)} BT, (9

where 2I+ R,(1)+ R (1) is a diagonal matrix from the

assumptions (AS2) and B is an orthogonal matrix.
Thus, it follows from (8) and (9) that the orthogonal
mixing matrix B is equal to the eigenvector matrix
U, up to a permutation and sign of eigenvectors,
provided that the diagonal elements of
21+ R, ()+ R (1) are distinct. This leads to the
estimate of the mixing matrix, 4= V™' U,

The method is summarized below.

Algorithm Outline: BSSPCA-1

e Whiten the data () by V= D_% U7 ie.,
2(0= V(8.

e Compute y()= 2()+ z(t—1).

s Apply the PCA to »(# to obtain U,
where R,(0)= U, D, U].

¢ Obtain the demixing matrix W=UIV.

We define o(=Wx()=UT2(#. Then one can
easily see that both R,(0) and R,(1)+ R I(1) are
diagonalized by the transformation W The following
theorem explains why the simultaneous diagonalization
of these two matrices viewing the method
BSSPCA-1 gives the solution to the problem of BSS.

Theorem 1. Let A,, A,;, D,, D€ R”™* be diagonal
matrices with nonzero diagonal entries. Suppose that
Ge R""" satisfies the following decompositions:

D,=GA,GT 10)

Dy=GA, GT an
Then the matrix G is the generalized permutation
matrix, ie, G=PA if Dy7'D, and A;'A, have
distinct diagonal entries.

The method is described below.

Algorithm Outline: BSSPCA-2

-1
e Whiten the data x(y) by V=D ? U7 ie,
2(8)= Vx(d).
e Compute the time-delayed correlation matrix,
M. ()=-1{ R.()+ R XD}, (12)

¢ Compute the SVD of M,(1), M.(1)= U, D,UT
to obtain U,.
¢ Compute the demixing matrix W=UTV.

In BSSPCA-1, instead of (6), we can consider
W= z2(D+ 2(t—1), =T, (13)
as long as R.(7) is invertible diagonal matrix with
distinct diagonal elements. Therefore, in BSSPCA-2,
instead of (12), we can use
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algorithm performance index(PI)
BSSPCA-1 0.0008
BSSPCA-2 0.0014
JADEI[7] 0.0127
fastICA[8] 0.0586
Extended Infomax[9] 0.0472
Table 1.Performance Index of various methods
M (D=4 R.(D+ R [(D). (14)
Moreover we can also consider a linear sum
HD= 3 @, 2t= D, (15)

and a linear combination .Z:l B8 M, (3.

4. Numerical Experiment

We demonstrate the useful behavior of our methods
(BSSPCA-1 and BSSPCA-2) through
experiment. We have chosen two speech and one

numerical

music signals that were sampled at 8 kHz, and three
independent colored-Gaussian
sources constituted the 6-dimensional source vector
s(f. The
generated by linear transformation. Total number of
samples were 10000.

sources. These six

6-dimensional  observation x(#) were

In order to evaluate the performance of methods, we
calculated the performance index(PI) defined by

=y B E e
| gl

nijlgﬁ|—1)
H et &)

where g, is the (4 7)-element of the global system
matrix G=WA represents  the
maximum value among the elements in the i-th row
vector of G, does the maximum value
among the elements in the i-th column vector of G.
The performance index defined in (16) tells us how
far the global system matrix G is from a generalized
permutation matrix (transparent transformation). The
zero performance index means perfect separation,
however in practice very small number (say, .001) is
acceptable performance.

In Table 1, we compared the performance index of
our methods to that of popular BSS algorithms such
as JADEI[7], fastICA[8], and extended infomax[9] are
based on higher-order statistics, one expect that they
have difficulty in separating out several Gaussian
sources.

(16)

and max ;| gl

max ;| £l

5. Conclusions

In this paper, we have shown that the standard
PCA could be applied to the task of BSS, provided
that sources are spatially uncorrelated but temporally
correlated. We have presented two  methods
(BSSPCA-1, BSSPCA-2) that are useful for BSS. The
adaptive implementation of BSSPCA-1 and BSSPCA-2
is straightforward since any existing adaptive PCA
algorithms can be employed. The main advantage of
proposed methods is to exploit only second-order
statistics, so the methods avoid any nonlinear
function, in contrast to the conventional ICA methods.
We are currently working on a way of finding a
linear combination (15) that guarantees that the
corresponding  time-delayed correlation matrix of
source vector has distinct diagonal elements. We also
working on the extension of the proposed methods to
handle the noisy observation vector that was not
considered in this paper.
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