• 제목/요약/키워드: nonlinear oscillator

Search Result 91, Processing Time 0.032 seconds

Analysis of Nonlinear Behavior in Fractional Van der Pol Equation with Periodic External Force and Fractional Differential Equation (분수 차수 미분 방정식과 주기적인 외력을 가진 Van der Pol 발진기에서의 비선형 거동 해석)

  • Lee, Jeong-Gu;Kim, Soon-Whan;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.191-196
    • /
    • 2016
  • Van der Pol's oscillators is non-conservative oscillator that having nonlinear damping phenomena. The energy of its system is dissipative at a high amplitude whereas its system creates the energy at low amplitude. This paper deals with the Van der Pol oscillator model with a fractional order when the external force apply into Van der Pol oscillator. This paper confirms the status of variation for the limit cycle according to the parameter variation of fractional order in the Van der Pol oscillator that can be represented by fractional differential equation.

Nonlinear Tuned Mass Damper for self-excited oscillations

  • Gattulli, Vincenzo;Di Fabio, Franco;Luongo, Angelo
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The effects of a class of nonlinear Tuned Mass Dampers on the aeroelastic behavior of SDOF systems are investigated. Unlike classical linear TMDs, nonlinear constitutive laws of the internal damping acting between the primary oscillator and the TMD are considered, while the elastic properties are keept linear. The perturbative Multiple Scale Method is applied to derive a set of bifurcation equations in the amplitude and phase and a parametric analysis is performed to describe the postcritical scenario of the system. Both cubic- and van der Pol-type dampings are considered and the dependence of the limit-cycle amplitudes on the system parameters is studied. These new results, compared with the previously obtained bifurcation scenario of a SDOF aeroelastic oscillator equipped with a linear TMD, show a detrimental effect on the maximum limit-cycle amplitude reduction of the nonlinear TMD. However, the analyses evidence that in the parameter region away from the perfect tuning condition the nonlinear connection can be used to tune the system with an enhancement of the limit-cycle amplitude reduction.

Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application

  • Qian, Y.H.;Zhang, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • In this paper, the optimal extended homotopy analysis method (OEHAM) is introduced to deal with the damped Duffing resonator driven by a van der Pol oscillator, which can be described as a complex Multi-Degree-of-Freedom (MDOF) nonlinear coupling system. Ecumenically, the exact solutions of the MDOF nonlinear coupling systems are difficult to be obtained, thus the development of analytical approximation becomes an effective and meaningful approach to analyze these systems. Compared with traditional perturbation methods, HAM is more valid and available, and has been widely used for nonlinear problems in recent years. Hence, the method will be chosen to study the system in this article. In order to acquire more suitable solutions, we put forward HAM to the OEHAM. For the sake of verifying the accuracy of the above method, a series of comparisons are introduced between the results received by the OEHAM and the numerical integration method. The results in this article demonstrate that the OEHAM is an effective and robust technique for MDOF nonlinear coupling systems. Besides, the presented methods can also be broadly used for various strongly nonlinear MDOF dynamical systems.

Integrated Circuit Design and Implementation of a Novel CMOS Neural Oscillator using Variable Negative Resistor (가변 부성저항을 이용한 새로운 CMOS 뉴럴 오실레이터의 집적회로 설계 및 구현)

  • 송한정
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.275-281
    • /
    • 2003
  • A new neural oscillator has been designed and fabricated in an 0.5 ${\mu}{\textrm}{m}$ double poly CMOS technology. The proposed neural oscillator consists of a nonlinear variable resistor with negative resistance as well as simple transconductors and capacitors. The variable negative resistor which is used as a input stage of the oscillator consists of a positive feedback transconductors and a bump circuit with Gaussian-like I-V curve. The proposed neural oscillator has designed in integrated circuit with SPICE simulations. Simulations of a network of 4 oscillators which are connected with excitatory and inhibitory synapses demonstrate cooperative computation. Measurements of the fabricated oscillator chip with a $\pm$ 2.5 V power supply is shown and compared with the simulated results.

Design of Low Phase Noise Frequency Synthesizer for Digital MMDS Downconverter (디지털 MMDS 하향변환기용 저 위상잡음 주파수 합성기의 설계)

  • 김영진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • In this paper, Phase locked microwave oscillator having the low phase noise and high stability for digital MMDS down converter was designed. we have been analyzed the low phase noise properties by the active device nonlinear equivalent circuits and derived the necessary and sufficient conditions for high stable voltage control oscillator. And it is applied to phase locked loop, we design the phase locked microwave oscillator of frequency synthesizer. Experimental results of designed phase locked oscillator shows -85dBc/Hz @ 10KHz phase noise properties and simulation result is -90Bc/Hz @ 10kHz respectively we shows that proposed low phase noise and stable conditions of phase locked microwave oscillator can be applied to design the high stable digital MMDS frequency synthesizer.

Design and Fabrication of Self-Oscillating Mixer Using Subharmonic Injection Locked Oscillator for 5GHz (주입 동기 방식을 이용한 5GHz 대역 자기발진 주파수 혼합기의 설계 및 제작)

  • 류재종;이주갑;류원열;윤영섭;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.86-89
    • /
    • 2003
  • In this paper, Self-Oscillating Mixer is designed by oscillator that was based on a general nonlinear input-output model for the subharmonic injection locked oscillator is analysed. We have designed and fabricated the Self-Oscillating Mixer for 5GHz by proposed subharmonic injection locked oscillator based frequency synthesizer structure that have characteristic of good frequency sensitivity, good phase noise. The design strategy leading to an optimized SILO with regards to its locking range is described and a test SOM circuit is demonstrated a 4dB conversion gain at 280MHz IF frequency from the carrier.

  • PDF

The K-band push-push type miniaturized haripin resonator oscillator (소형 Haripin 공진기를 이용한 K 대역 Push-Push형 발진기)

  • 주한기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.967-973
    • /
    • 1997
  • In this paper, the designed and fabrication of a K-band push-push oscillator using miniaturized hairpin resonator have been presented. One experimenal oscillator has been designed and fabricated for K-band point-to-point operation. the miniaturized harpin resonator has been analyzed theoretically and simulated by MPIE(Mixed Potential Integral Equation) method. With this results, the analysis of hairpin resonator which coupled microstrip line has been carried out with transmission-mode using this results. an optimized output matching network for the suppression of the fundamental and the 3rd order harmonic was acquired by using a nonlinear analysis method. The fabricated oscillator shows the output power of -2.28dBm, the fundamental frequency suppression of -19dBc, the 3rd order harmonic suppressionof -24dBc and 0.33 percent effiiency at 22.8GHz. The experimental outputs are in good agreement with the theoretical and simulated results.

  • PDF

A Study on the Deadbeat Response Attribute of Nonlinear Systems (비선형시스템의 데드비트응답 특성 연구)

  • Song, Ja-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1993-1995
    • /
    • 2001
  • The subject of nonlinear control is an important area of automatic control. The behavior of nonlinear systems is much more complex. If the operating range of a control system is small, and if the involved nonlinearities are smooth, then the control system may be resonably approximated by a set of linear differential equations. This paper presents the deadbeat response attribute of some nonlinear systems, e.g., magnetic levitation, pendulum, van der pol oscillator etc.. The studied results through the computer simulation are shown a promising attribute of deadbeat response that the outputs of the systems are reached relatively fast the steady state.

  • PDF

Design of Multi-layer VCO for 960 MHz Band (960 MHz대역 다층구조 VCO 설계)

  • 이동희;정진휘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.492-498
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was Dupont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2 mm$(0.11 [cc]).