• Title/Summary/Keyword: nonlinear optical

Search Result 710, Processing Time 0.022 seconds

All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier

  • Kaur, Sanmukh;Kaler, Rajinder-Singh;Kamal, Tara-Singh
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.222-227
    • /
    • 2015
  • We propose a new and potentially integrable scheme for the realization of an all-optical binary full adder employing two XOR gates, two AND gates, and one OR gate. The XOR gate is realized using a Mach-Zehnder interferometer (MZI) based on a semiconductor optical amplifier (SOA). The AND and OR gates are based on the nonlinear properties of a semiconductor optical amplifier. The proposed scheme is driven by two input data streams and a carry bit from the previous less-significant bit order position. In our proposed design, we achieve extinction ratios for Sum and Carry output signals of 10 dB and 12 dB respectively. Successful operation of the system is demonstrated at 10 Gb/s with return-to-zero modulated signals.

Green Generation and Investigation of Optical Properties of Amorphous BaTiO3 by Poling (폴링에 의한 비정질 BaTiO3 박막의 광학적 특성 조사 및 녹색광 발생)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2020
  • BaTiO3 thin films was deposited on the slide glass by RF sputter. We have investigated the optical properties of BaTiO3 film after corona poling process. The transmission characteristics was very good over 80% in visible region and second order nonlinear optical coefficient depends on the poling conditions. The nonlinear optical coefficient of poled BaTiO3 films was about 1.15pm/V. The relaxation of second order nonlinear optical was remained around 60% of the initial value for a long time. In addition we have observed the green light generation from BaTiO3 films.

Performance Analysis of Electrical MMSE Linear Equalizers in Optically Amplified OOK Systems

  • Park, Jang-Woo;Chung, Won-Zoo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.232-236
    • /
    • 2011
  • We analyze the linear equalizers used in optically amplified on-off-keyed (OOK) systems to combat chromatic dispersion (CD) and polarization mode dispersion (PMD), and we derive the mathematical minimum mean squared error (MMSE) performance of these equalizers. Currently, the MMSE linear equalizer for optical OOK systems is obtained by simulations using adaptive approaches such as least mean squared (LMS) or constant modulus algorithm (CMA), but no theoretical studies on the optimal solutions for these equalizers have been performed. We model the optical OOK systems as square-law nonlinear channels and compute the MMSE equalizer coefficients directly from the estimated optical channel, signal power, and optical noise variance. The accuracy of the calculated MMSE equalizer coefficients and MMSE performance has been verified by simulations using adaptive algorithms.