• Title/Summary/Keyword: nonlinear numerical analysis

Search Result 2,001, Processing Time 0.03 seconds

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF

The Calculation of Seawater Exchange Rate in a Port by Numerical Analysis (수치해석을 이용한 항만의 해수교환율 산정)

  • Kim, Hyung-Jun;Kang, Gyu-Young;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.237-240
    • /
    • 2008
  • Numerical Analysis for exchanging seawater experiment is carried out in Do-Jang fish port. The change of tidal velocity and water level is derived by the two-dimensional nonlinear shallow-water numerical model. To calculate exchange rate of seawater with the change of tidal velocity and water level, a two-dimensional numerical model is employed which governing equations are Fokker-Plank equations. The calculated exchange rates of each time are described in tables and figures.

  • PDF

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

A Nonlinear Response Analysis of Tension Leg Platforms in Irregular Waves (불규칙파중의 인장계류식 해양구조물의 비선형 응답 해석)

  • Lee, Chang-Ho;Gu, Ja-Sam;Jo, Hyo-Je;Hong, Bong-Gi
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.33-42
    • /
    • 1998
  • In the presence of incident waves with different frequencies, the second order sum and difference frequency waves due to the nonlinearity of the incident waves come into existence. Although the magnitudes of the forces produced on a Tension Leg Platform(TLP) by these nonlinear waves are small, they act on the TLP at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wave loads produced close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The second order wave exciting forces and moments have been obtained by the method based on direct integration of pressure acting on the submerged surface of a TLP. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis

  • Kim, T.H.;Cheon, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.63-79
    • /
    • 2012
  • The purpose of this study is to evaluate the behavior and strength of prestressed concrete deep beams using nonlinear analysis. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, the RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used to account for the material nonlinearity of prestressed concrete. The smeared crack approach was incorporated. A bonded or unbonded prestressing bar element is used based on the finite element method, which can represent the interaction between the prestressing bars and concrete of a prestressed concrete member. The proposed numerical method for the evaluation of behavior and strength of prestressed concrete deep beams is verified by comparing its results with reliable experimental results.

Characteristic Analysis of Nonlinear Sloshing in Baffled Tank (격막 설치에 따른 비선형 슬로싱 특성 연구)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1455-1462
    • /
    • 2005
  • In this paper, we intend to introduce a nonlinear finite element method based on the fully nonlinear potential flow theory in order to simulate the large amplitude sloshing flow in two-dimensional baffled tank subject to horizontally forced excitation. The free surface is tracked by a direct time differentiation scheme with the four-step predictor-corrector time integration method. The flow velocity is accurately recovered from the velocity potential by second-order least square method. In order to maintain the finite element mesh regularity and total mass, the semi-Lagrangian surface tracking method with area conservation is applied. According to the numerical formulae, we perform the parametric experiments by varying the installation height and the opening width of baffles, in order to examine the effects of baffle on the nonlinear liquid sloshing. From the numerical results, the hydrodynamic characteristics of the large amplitude sloshing are investigated.

Nonlinear FEA of higher order beam resting on a tensionless foundation with friction

  • He, Guanghui;Li, Xiaowei;Lou, Rong
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-116
    • /
    • 2016
  • A novel higher order shear-deformable beam model, which provides linear variation of transversal normal strain and quadratic variation of shearing strain, is proposed to describe the beam resting on foundation. Then, the traditional two-parameter Pasternak foundation model is modified to capture the effects of the axial deformation of beam. The Masing's friction law is incorporated to deal with nonlinear interaction between the foundation and the beam bottom, and the nonlinear properties of the beam material are also considered. To solve the mathematical problem, a displacement-based finite element is formulated, and the reliability of the proposed model is verified. Finally, numerical examples are presented to study the effects of the interfacial friction between the beam and foundation, and the mechanical behavior due to the tensionless characteristics of the foundation is also examined. Numerical results indicate that the effects of tensionless characteristics of foundation and the interfacial friction have significant influences on the mechanical behavior of the beam-foundation system.

A GENERAL FORM OF MULTI-STEP ITERATIVE METHODS FOR NONLINEAR EQUATIONS

  • Oh, Se-Young;Yun, Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.773-781
    • /
    • 2010
  • Recently, Yun [8] proposed a new three-step iterative method with the fourth-order convergence for solving nonlinear equations. By using his ideas, we develop a general form of multi-step iterative methods with higher order convergence for solving nonlinear equations, and then we study convergence analysis of the multi-step iterative methods. Lastly, some numerical experiments are given to illustrate the performance of the multi-step iterative methods.