• 제목/요약/키워드: nonlinear model

검색결과 6,573건 처리시간 0.035초

기존건축물 내진성능평가를 위한 전산시스템 모듈 개발 (Computerized Modules for Seismic Performance Evaluation of Existing Buildings)

  • 황선우;김태진;김종호
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.269-276
    • /
    • 2016
  • Seismic performance evaluation of existing building usually needs much time and man power, especially in case of nonlinear analysis. Many data interaction steps for model transfer are needed and engineers should spend much time with simple works like data entry. Those time-consuming steps could be reduced by applying computerized and automated modules. In this study, computational platform for seismic performance evaluation was made with several computerized modules. StrAuto and floor load transfer module offers a path that can transfer most linear model data to nonlinear analysis model so that engineers can avoid a lot of repetitive work for input information for the nonlinear analysis model. And the new nonlinear property generator also helps to get the nonlinear data easily by importing data from structural design program. To evaluate the effect of developed modules on each stages, seismic performance evaluation of example building was carried out and the lead time was used for the quantitative evaluation.

Nonlinear control of a double-effect evaporator by riemannian geometric approach

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.405-410
    • /
    • 1994
  • The purpose of this paper is to present the details of design procedure of a nonlinear regulator by Riemannian geometric approach and to applied it to the case of a double-effect evaporator. A nonlinear geometric model is proposed on a direct sum space of a state vector and a control vector as well as in the previous parers by the authors. The geometric model is derived by replacing the orthogonal straight coordinate axes of a linear system on the direct sum space with the curvilinear coordinate axes. The integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the geometric model a nonlinear regulator with a performance index is designed renewedly by the procedure of optimization. The construction method of the curvilinear coordinate axes on which the nonlinear system behaves as a linear system is discussed. To apply the above regulator theory to double-effect evaporators especially to the pilot plant at the University of Alberta, a suitable nonlinear model is determined by the plant dynamics. The optimal control law is derived through the calculation of the homeomorphism. As a result it is confirmed that the regulator is effective and superior to that of the conventional control.

  • PDF

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

쿼터니언을 이용한 SDINS의 등가 비선형 오차모델 (Equivalent nonlinear error model of SDINS using quaternion)

  • 유명종;전창배;박준표;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.864-866
    • /
    • 1996
  • The attitude error is expressed using four kinds of quaternion errors. And the explicit relation equations between them are derived four kinds of nonlinear error models of SDINS using the their explicit relation are also proposed for a nonlinear filter which may be available for a system in the presence of a large attitude error the concept of the proposed nonlinear error model is applied to the velocity aided SDINS using a linear Kalman filter and an extended Kalman filter the simulation results reveal a improvement of performance using the nonlinear error model.

  • PDF

System Identification of the Hammerstein Processes for Automatic Tuning of PID Controller Using Relay Feedback

  • Koo, Doe-Gyoon;Youn, Jung-Hoon;Lee, Jie-Tae;Sung, Su-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.124.3-124
    • /
    • 2001
  • The nonlinearity of several chemical processes is usually approximated by a series of the nonlinear static element and the linear subsystem. In the case of the model that the nonlinear static element precedes the linear subsystem, it is called a Hammerstein model. It is a Wiener model when the order is reserved. Here we investigate a relay feedback identification method for Hammerstein type nonlinear processes. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback method. From two times activation of nonlinear processes, we identify he whole range of the nonlinear static function as well as the ultimate information of the linear subsystem.

  • PDF

Lu-Gre 마찰 모델을 갖는 XY구동계의 위치제어 (Position Control for the XY Drive System with Lu-Gre Friction Model)

  • 한성익;방두열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2001
  • In a precise control system, the Lu-Gre friction model has often been used to describe the nonlinear friction. For the XY table system with this friction model, we identified the friction parameters and designed nonlinear observer. The nonlinear friction effects could be removed within appropriate position tracking errors and control inputs through experiments. Also, we designed the nonmodel-based SMC system to compensate the nonlinear friction. Through experiments, it is shown that this method has the similar performance compared with the nonlinear observer system and is useful when friction parameters are hard to identify except the problem of input chattering.

  • PDF

프리스트레스 콘크리트 원전 격납건물의 비선형 유한요소해석에 관한 연구 (A Study on the Nonlinear Finite Element Analysis of Prestressed Concrete Containment Vessel)

  • 이홍표;전영선;송영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.639-646
    • /
    • 2006
  • A nonlinear finite element analysis is carried out to predict the ultimate internal pressure and failure mechanism of a 1/4 scale prestressed concrete containment vessel(PCCV) model using the commercial code ABAQUS. Therefore, this paper is mainly focused to compare the influence of concrete material model, tension stiffening parameter, uplift phenomenon and basemat. From the analysis results, nonlinear behavior of the PCCV showed a substantially different aspects in accordance with the nonlinear material model for the concrete as well as tension stiffening parameter. The boundary conditions beneath the basemat are considered to be a fixed condition and a nonlinear spring element to compare the influence of the uplift. The finite element analysis is considered with and without a basemat to find out the influence of the basemant itself. From the analysis results, the nonlinear behavior of the PCCV is entirely similar for the two cases.

  • PDF

섬유요소를 이용한 교량의 3차원 지진해석 (3D Nonlinear Seismic Analysis of a Bridge Using Fiber Element)

  • 조정래;곽임종;조창백;김병석;김영진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.141-146
    • /
    • 2002
  • In the present design concept, the nonlinear behavior of bridges is allowed under large earthquake. Therefore, demands for nonlinear analyses of bridges are increased more and more especially in the area of seismic assessment. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element Is adopted for model ins pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continuos bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is investigated. Second, the nonlinear dynamic analyses of the full bridge model is performed, considering 3 directional earthquake excitations.

  • PDF