• Title/Summary/Keyword: nonlinear impulsive system

Search Result 21, Processing Time 0.021 seconds

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

Pattern Extraction of EMG Signal of Spinal Cord Injured Patients via Multiscaled Nonlinear Processing (다중스케일 비선형 처리를 통한 척수 손상 환자의 근전도 신호 패턴 추출)

  • Lee, Y. S.;Lee, J.;Kim, H. D.;Park, I. S.;Ko, H. Y.;Kim, S. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.249-257
    • /
    • 2001
  • The voluntary contracted EMG signal of spinal cord injured patients is very small because the information from central nervous system is not sufficiently transmitted to $\alpha$ motor neuron or muscle fiber. Therefore the acquisited EMG signal from needle or surface electrodes can not be identified obvious voluntary contraction pattern by muscle movement. In this paper we propose the extraction technique of voluntary muscle contraction and relaxation pattern from EMG signal of spinal cord injured patient whose EMG signal is composed of the linear sum of mo색 unit action potentials with two noise sources, additive noise assumed to be white Gaussian noise and high frequency discharge assumed to be not motor unit action potential but impulsive noise. In order to eliminate impulsive noise and additive noise from voluntary contracted EMG signal, we use the FatBear filter which is a nonarithmetic piecewise constant filter, and multiscale nonlinear wavelet denoising processing, respectively. The proposed technique is applied to the EMG signal acquisited from transverse myelitis patients to extract voluntary muscle contraction pattern.

  • PDF

Impulse Noise Cancellation Using Adaptive Threshold Algorithm (적응 문턱치 알고리즘을 이용한 충격잡음 제거)

  • Lee, Jin;Park, Jong-Hwan;Kim, Se-Dong;Lee, Young-Suk;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.26-34
    • /
    • 2000
  • This paper presents a new adaptive impulse noise cancelling technique based on the adaptive nonlinear suppressing function. The proposed "adaptive threshold algorithm (ATA)" is controlled by the normalized power prior input data term, and this adaptive threshold makes the cancelling system highly robust against additive impulse noise. For the performance evaluation, we have tested the proposed algorithm with the observed signals simulated in various impulsive noise environments and real EMG signals. As a result the proposed algorithm shows superior performance of 51.7% to the available techniques in the points of SNR and MSE.

  • PDF

Muscle Contraction and Relaxation Pattern Analysis of Spinal Cord Injured Patient (척추 손상 환자의 근신호 수축 및 이완 패턴 분석)

  • Lee, Y.S.;Lee, J.;Kim, H.D.;Park, I.S.;Ko, H.Y.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.398-401
    • /
    • 1997
  • The EMG signal of spinal cord injured patient is very feeble because that the information from central nervous system is not sufficiently transmitted to molter neuron or muscle fiber. Therefore the observer can not observe contraction and relaxation movement of muscle from the raw EMG signal. In this paper, we propose the muscle contraction and relaxation pattern analysis method of spinal cord injured patient whose EMG signal is composed of the sum of motor unit action potential train with additive white Gaussian noise and impulsive noise. From the EMG model, we denoise impulsive noise using median filter which is a kind of nonlinear filter and the output of median filter is transformed to wavelet transform domain for denoising additive white Gaussian noise using threshold level removal technique. As a result, we can obtain the clear contraction and relaxation pattern.

  • PDF

Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method (강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석)

  • Lee, Euntaek;Go, Gwangsoo;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

Performance of TMDs on nonlinear structures subjected to near-fault earthquakes

  • Domizio, Martin;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.725-742
    • /
    • 2015
  • Tuned mass dampers (TMD) are devices employed in vibration control since the beginning of the twentieth century. However, their implementation for controlling the seismic response in civil structures is more recent. While the efficiency of TMD on structures under far-field earthquakes has been demonstrated, the convenience of its employment against near-fault earthquakes is still under discussion. In this context, the study of this type of device is raised, not as an alternative to the seismic isolation, which is clearly a better choice for new buildings, but rather as an improvement in the structural safety of existing buildings. Seismic records with an impulsive character have been registered in the vicinity of faults that cause seismic events. In this paper, the ability of TMD to control the response of structures that experience inelastic deformations and eventually reach collapse subject to the action of such earthquakes is studied. The results of a series of nonlinear dynamic analyses are presented. These analyses are performed on a numerical model of a structure under the action of near-fault earthquakes. The structure analyzed in this study is a steel frame which behaves as a single degree of freedom (SDOF) system. TMD with different mass values are added on the numerical model of the structure, and the TMD performance is evaluated by comparing the response of the structure with and without the control device.

Minimum-Energy Spacecraft Intercept on Non-coplanar Elliptical Orbits Using Genetic Algorithms

  • Oghim, Snyoll;Lee, Chang-Yull;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.729-739
    • /
    • 2017
  • The objective of this study was to optimize minimum-energy impulsive spacecraft intercept using genetic algorithms. A mathematical model was established on two-body system based on f and g solution and universal variable to address spacecraft intercept problem for non-coplanar elliptical orbits. This nonlinear problem includes many local optima due to discontinuity and strong nonlinearity. In addition, since it does not provide a closed-form solution, it must be solved using a numerical method. Therefore, the initial guess is that a very sensitive factor is needed to obtain globally optimal values. Genetic algorithms are effective for solving these kinds of optimization problems due to inherent properties of random search algorithms. The main goal of this paper was to find minimum energy solution for orbit transfer problem. The numerical solution using initial values evaluated by the genetic algorithm matched with results of Hohmann transfer. Such optimal solution for unrestricted arbitrary elliptic orbits using universal variables provides flexibility to solve orbit transfer problems.

Transient Characteristics Analysis of Structural Systems Undergoing Impact Employing Hilbert-Huang Transformation (힐버트 황 변환을 이용한 충격을 받는 시스템의 과도특성 분석)

  • Lee, Seung-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1442-1448
    • /
    • 2009
  • Transient characteristics of a signal can be effectively exhibited in time-frequency domain. Hilbert-Huang Transform (HHT) is one of the time-frequency domain analysis methods. HHT is known for its several advantages over other signal analysis methods. The capability of analyzing non-stationary or nonlinear characteristics of a signal is the primary advantage of HHT. Moreover, it is known that HHT can provide fine resolution in high frequency region and handle large size data efficiently. In this study, the effectiveness of Hilbert-Huang transform is illustrated by employing structural systems undergoing impact. A simple discrete system and an axially oscillating cantilever beam undertaking periodic impulsive force are chosen to show the effectiveness of HHT.

Numerical Analysis on Posterior Prosthesis of Implant Temporary Teeth Combination Bridge (임플란트 임시치아 결합형 브리지의 구치부 보철물에 대한 수치해석)

  • Seo, Kyung-Hyo;Lee, Chi-Woo;Moon, Byung-Cheol
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.60-65
    • /
    • 2014
  • This research examined an immediate loading capable of providing a masticatory function and financial affordability while satisfying every requirement of a useful immediate loading. In this research, numerical value analysis was performed on couple-type posterior teeth implants developed by making up for the problems of extant implants. As a result of examining the effects of external impacts on extant implants and their deformation, relatively lager deformations separated from a molar were found concerning molar deformation implant with the maximum deformation level being approximately 1.657mm. In this research, the improved implant showed much improvement in terms of impact analysis in its deformation dispersion status after unloading the impulsive load from a punch. As for the case of hepf, about 1.657mm occurred but the improved model showed about 0.9217mm, exhibiting 55.6% advancement.

A Reduction Scheme of Impulse and Clipping Noises Based on Compressed Sensing for OFDM Communication Systems (직교주파수분할다중화 통신 시스템을 위한 압축 센싱 기반 임펄스 잡음 및 클리핑 잡음 감쇄 기법)

  • Seo, Young-Hun;Choi, Byoung-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1739-1741
    • /
    • 2016
  • A compressive sensing based iterative scheme for reducing both the impulsive noise as well as the clipping noise is proposed for OFDM-based communication systems. Nonlinear blanking using adaptive thresholds is used in the 1st stage followed by two consecutive compressive sensing based detection with the aid of decision feedback for reducing the BER gradually. Our simulation results revealed an SNR gain of 4.5dB at the BER of $10^{-5}$.