• Title/Summary/Keyword: nonlinear identification

Search Result 560, Processing Time 0.026 seconds

Nonlinear Hinge Dynamics Estimation of Deployable Missile Control Fin (접는 미사일 조종날개의 비선형 힌지 동특성 파악)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.848-854
    • /
    • 2002
  • The nonlinear characteristics for the hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method, especially, “Force-State Mapping Technique”, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

  • PDF

Identification of Optimum Sites for Power System Controller using Normal Forms of Vector Field (벡터계 정규 형식을 이용한 전력시스템 제어기 설치 위치 선정)

  • 장길수;이인수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.227-233
    • /
    • 2004
  • In stressed power system due to the presence of increased nonlinearity and the existence of nonlinear modal interactions. there exist some limitations to the use of conventional linear system theory to identify the optimum sites for a controller. This paper suggests an approach based on the method of normal forms to identify the optimum sites for controllers with incorporating the nonlinear interaction . In this paper, nonlinear participation factors and coupling factors are proposed as measures of the nonlinear interactions, and identification procedure of optimum sites for a controller is also proposed. The proposed procedure is applied to the 10-generator New England System and the KEPCO System in the year of 2010, and the results illustrate its capabilities.

Control Method of on Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;김영렬;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

Identification of Optimum Sites for Power System Controller using Normal Forms of Vector Field (벡터계 정규 형식을 이용한 전력시스템 제어기 설치 위치 선정)

  • 장길수;이인수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.227-227
    • /
    • 2004
  • In stressed power system due to the presence of increased nonlinearity and the existence of nonlinear modal interactions. there exist some limitations to the use of conventional linear system theory to identify the optimum sites for a controller. This paper suggests an approach based on the method of normal forms to identify the optimum sites for controllers with incorporating the nonlinear interaction . In this paper, nonlinear participation factors and coupling factors are proposed as measures of the nonlinear interactions, and identification procedure of optimum sites for a controller is also proposed. The proposed procedure is applied to the 10-generator New England System and the KEPCO System in the year of 2010, and the results illustrate its capabilities.

Attitude Dynamics Identification of Unmanned Aircraft Vehicle

  • Salman Shaaban Ali;Sreenatha Anavatti G.;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.782-787
    • /
    • 2006
  • The role of Unmanned Aircraft Vehicles(UAVs) has been increasing significantly in both military and civilian operations. Many complex systems, such as UAVs, are difficult to model accurately because they exhibit nonlinearity and show variations with time. Therefore, the control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, identification of the mathematical model is an important process in controller design. In this paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear state space model for attitude dynamics of UAV is derived and verified. Real time simulation results show that the model dynamics match experimental data.

Fractal behavior identification for monitoring data of dam safety

  • Su, Huaizhi;Wen, Zhiping;Wang, Feng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.529-541
    • /
    • 2016
  • Under the interaction between dam body, dam foundation and external environment, the dam structural behavior presents the time-varying nonlinear characteristics. According to the prototypical observations, the correct identification on above nonlinear characteristics is very important for dam safety control. It is difficult to implement the description, analysis and diagnosis for dam structural behavior by use of any linear method. Based on the rescaled range analysis approach, the algorithm is proposed to identify and extract the fractal feature on observed dam structural behavior. The displacement behavior of one actual dam is taken as an example. The fractal long-range correlation for observed displacement behavior is analyzed and revealed. The feasibility and validity of the proposed method is verified. It is indicated that the mechanism evidence can be provided for the prediction and diagnosis of dam structural behavior by using the fractal identification method. The proposed approach has a high potential for other similar applications.

Dimension Analysis of Chaotic Time Series Using Self Generating Neuro Fuzzy Model

  • Katayama, Ryu;Kuwata, Kaihei;Kajitani, Yuji;Watanabe, Masahide;Nishida, Yukiteru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.857-860
    • /
    • 1993
  • In this paper, we apply the self generating neuro fuzzy model (SGNFM) to the dimension analysis of the chaotic time series. Firstly, we formulate a nonlinear time series identification problem with nonlinear autoregressive (NARMAX) model. Secondly, we propose an identification algorithm using SGNFM. We apply this method to the estimation of embedding dimension for chaotic time series, since the embedding dimension plays an essential role for the identification and the prediction of chaotic time series. In this estimation method, identification problems with gradually increasing embedding dimension are solved, and the identified result is used for computing correlation coefficients between the predicted time series and the observed one. We apply this method to the dimension estimation of a chaotic pulsation in a finger's capillary vessels.

  • PDF

Identification of volterra kernels of nonlinear systems up to 3rd order

  • Kashiwagi, Hiroshi;Yeping, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.527-530
    • /
    • 1994
  • A method for obtaining Volterra kernels of a nonlinear system by use of pseudorandom M-sequences and correlation technique, proposed by the authors in 1993, is further analysed and some applications for identifying nonlinear system having feedback loop are shown.

  • PDF

Nonlinear boundary parameter identification of bridges based on temperature-induced strains

  • Wang, Zuo-Cai;Zha, Guo-Peng;Ren, Wei-Xin;Hu, Ke;Yang, Hao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.563-573
    • /
    • 2018
  • Temperature-induced responses, such as strains and displacements, are related to the boundary conditions. Therefore, it is required to determine the boundary conditions to establish a reliable bridge model for temperature-induced responses analysis. Particularly, bridge bearings usually present nonlinear behavior with an increase in load, and the nonlinear boundary conditions cause significant effect on temperature-induced responses. In this paper, the bridge nonlinear boundary conditions were simulated as bilinear translational or rotational springs, and the boundary parameters of the bilinear springs were identified based on the measured temperature-induced responses. First of all, the temperature-induced responses of a simply support beam with nonlinear translational and rotational springs subjected to various temperature loads were analyzed. The simulated temperature-induced strains and displacements were assumed as measured data. To identify the nonlinear translational and rotational boundary parameters of the bridge, the objective function based on the temperature-induced responses is then created, and the nonlinear boundary parameters were further identified by using the nonlinear least squares optimization algorithm. Then, a beam structure with nonlinear translational and rotational springs was simulated as a numerical example, and the nonlinear boundary parameters were identified based on the proposed method. The numerical results show that the proposed method can effectively identify the parameters of the nonlinear boundary conditions. Finally, the boundary parameters of a real arch bridge were identified based on the measured strain data and the proposed method. Since the bearings of the real bridge do not perform nonlinear behavior, only the linear boundary parameters of the bridge model were identified. Based on the bridge model and the identified boundary conditions, the temperature-induced strains were recalculated to compare with the measured strain data. The recalculated temperature-induced strains are in a good agreement with the real measured data.

A study on development of a reduced-order distillation model and identification using nonlinear filtering techniques (증류공정의 차수감소모델 개발 및 비선형휠터기법을 이용한 모델인식에 관한 연구)

  • 김홍식;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.367-371
    • /
    • 1989
  • A linear form of reduced-order distillation model is proposed, which contains the physical properties of distillation process and can be used in real time applications. The proposed model is linear in terms of liquid mole fraction and contains some tuning parameters. To verify the applicability of the proposed model, the model identification using nonlinear filtering techniques was applied. As a result, it was found that this model represented the simulated distillation process very closely as the parameters were converged.

  • PDF