• Title/Summary/Keyword: nonlinear flexural behavior

Search Result 198, Processing Time 0.022 seconds

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Nonlinear Phenomena In Resonant Excitation of Flexural-Gravity Waves

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.1-12
    • /
    • 2003
  • The influence of nonlinear phenomena on the behavior of stationary forced flexural-gravity waves on the surface of deep water is investigated, when the perturbation of external pressure moves with near-resonant velocity. It is shown that there are three branches of bounded stationary solutions turning into asymptotic solutions of the linear problem with zero initial conditions. For the first time ice sheet destruction by turbulent fluctuations of atmosphere pressure in ice adjacent layer in wind conditions is studied.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

A Study on Nonlinear Analysis of Circular Concrete Beams Confined by Carbon Sheet Tube Using Solid element (Solid Element를 이용한 Carbon Sheet Tube로 구속된 원형 콘크리트 보의 비선형 해석적 연구)

  • 박연호;박진영;이경훈;홍원기;김희철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.147-154
    • /
    • 2003
  • The purpose of this study is to investigate analytically the flexural behavior characteristics of Circular concrete beams confined by carbon sheet. Nonlinear analysis method is presented to simulate the structural behavior beam models. The proposed analytical hardening models were considered the confinement effect of concrete and the tensile effect of carbon sheet in tensile region of concrete. Prandtl-Reuss numerical formula was used to nonlinear analysis of finite element models. Comparisons analytical models with experimental data obtained from flexural testing in the laboratory were presented. Analytical and experimental models show similar behavior.

  • PDF

Analysis of RC Beams Strengthened with Fiber Sheets (섬유시트로 보강된 RC 보의 해석기법 연구)

  • Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.154-163
    • /
    • 2006
  • This paper presents a nonlinear analysis method for the reinforced concrete beams strengthened by the external bonding of high strength, lightweight fiber sheets on the tension face of the beams. The method is based on the results of experimental studies. The experimental study involved tensile tests of 120 specimens to evaluate the tensile properties of fiber sheets(carbon, glass, and aramid fiber) and bending tests of 75 beams strengthened with various types of fiber sheets to evaluate the flexural capacities. Based on these experimental results, reasonable rupture strains of the fiber sheets were estimated. The nonlinear flexural analysis considered nonlinear flexural stresses as compressive and tensile stresses of concrete, load-deflection curves, and rupture strains of fiber sheets. The nonlinear flexural analysis accurately predicts the load-deflection response and the flexural behavior of the retrofitted beams.

Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns

  • Mahdavi, Navideh;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.703-710
    • /
    • 2019
  • While fiber-reinforced plastic (FRP) materials have been largely used in the retrofitting of concrete buildings, its application has been limited because of some problems such as de-bonding of FRP layers from the concrete surface. This paper is the part of a wide experimental and analytical investigation about flexural retrofitting of reinforced concrete (RC) columns using FRP and mechanical fasteners (MF). A new generation of MF is proposed, which is applicable for retrofitting of RC columns. Furthermore, generally, to evaluate a retrofitted structure the nonlinear static and dynamic analyses are the most accurate methods to estimate the performance of a structure. In the nonlinear analysis of a structure, accurate modeling of structural elements is necessary for estimation the reasonable results. So for nonlinear analysis of a structure, modeling parameters for beams, columns, and beam-column joints are essential. According to the concentrated hinge method, which is one of the most popular nonlinear modeling methods, structural members shall be modeled using concentrated or distributed plastic hinge models using modeling parameters. The nonlinear models of members should be capable of representing the inelastic response of the component. On the other hand, in performance based design to make a decision about a structure or design a new one, numerical acceptance should be determined. Modeling parameters and numerical acceptance criteria are different for buildings of different types and for different performance levels. In this paper, a new method was proposed for FRP retrofitted columns to avoid FRP debonding. For this purpose, mechanical fasteners were used to achieve the composite behavior of FRP and concrete columns. The experimental results showed that the use of the new method proposed in this paper increased the flexural strength and lateral load capacity of the columns significantly, and a good composition of FRP and RC column was achieved. Moreover, the modeling parameters and acceptance criteria were presented, which were derived from the experimental study in order to use in nonlinear analysis and performance-based design approach.

Nonlinear Flexural Analysis of RC Beam Overlayed by LMC (LMC로 덧씌우기된 RC보의 비선형 휨 해석)

  • Kim Seong Hwan;Kim Dong Ho;Choi Sung Yong;Yun Kyung Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.61-64
    • /
    • 2005
  • Recently to repair the structure of deteriorated concrete, LMC rehabilitation method is introduced. however, this method has the possible risks of brittle failure depending on bond performance of the interface. the prediction of interfacial behavior becomes essential to protect the failure. all of the studies which have been done about this field are only about material property such as strength, durability, bond. there is not enough data and studies about structural behavior and numerical analysis. therefore, in this study A flexural nonlinear analysis model of ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The parameter study showed that overlay thickness was a main influencing factor to the behavior of RC beam overlayed by LMC.

  • PDF

Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat;Belkacem, Adim
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Development of the Nonlinear Analysis Model on Flexural Behavior of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 보강된 RC 보의 구조거동 해석모델 개발)

  • Woo, Sang-Kyun;Nam, Jin-Won;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.87-97
    • /
    • 2008
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally develop the nonlinear analysis model with the aim of predicting the improving effects of structural capacity and the structural behaviors of RC beams. From this study, the characteristics of bond and flexural behavior of the prestressed CFRP plates were analyzed and examined. In deed, the beams were tested with experimental parameters of strengthening methods and prestressing level, and the developed analysis model was evaluated with the testing results. From this study, it is concluded that the developed analysis model have a good reliability and can be applied to the strengthening design of beams using CFRP plates.

Flexural Bchavior of RC Beam according to Thickness Repaired and Rehabilitated with VES-LMC (VES-LMC의 보수·보강 두께에 따른 RC보의 휨거동 특성)

  • Kim, Seong-Kwon;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.101-110
    • /
    • 2006
  • The purpose of this study was to investigate the flexural, interfacial behavior, crack propagation, nonlinear behavior, effect repaired and rehabilitated with VES-LMC using RC beam with 4-point-loading test. The results were following: The test result showed that repair and rehabilitation effect increased as its depth increased, which was verified by the increase of flexural stiffness. More than 40% of stiffness was improved when the depth of repair was up to steel position. However, there was a little difference between 8cm and 12cm repaired beam. This means the repair depth must be considered. The interfacial behavior data showed that the repaired or rehabilitated beams had a little relative displacement. This means that two materials behave comparatively acting together. This suggested that interface treatment were one of the most important jobs in composite beams.

  • PDF