• 제목/요약/키워드: nonlinear finite elements

Search Result 405, Processing Time 0.021 seconds

A Study on the Finite Element Analysis of Three Dimensional Plate Structures (3차원 공간 판구조물의 유한요소 해석에 관한 연구)

  • 권오영;남정길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

Dynamic response of layered hyperbolic cooling tower considering the effects of support inclinations

  • Asadzadeh, Esmaeil;Alam, Mehtab;Asadzadeh, Sahebali
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.797-816
    • /
    • 2014
  • Cooling tower is analyzed as an assembly of layered nonlinear shell elements. Geometric representation of the shell is enabled through layered nonlinear shell elements to define the different layers of reinforcements and concrete by considering the material nonlinearity of each layer for the cooling tower shell. Modal analysis using Ritz vector analysis and nonlinear time history analysis by direct integration method have been carried out to study the effects of the inclination of the supporting columns of the cooling tower shell on its dynamic characteristics. The cooling tower is supported by I-type columns and ${\Lambda}$-type columns supports having the different inclination angles. Relevant comparisons of the dynamic response of the structural system at the base level (at the junction of the column and shell), throat level and at the top of the tower have been made. Dynamic response of the cooling tower is found to be significantly sensitive to the change of the inclination of the supporting columns. It is also found that the stiffness of the structure system increases with increase in inclination angle of the supporting columns, resulting in decrease of the period of the structural system. The participation of the stiffness of the tower in structural response of the cooling tower is fund to be dependent of the change in the inclination angle and even in the types of the supporting columns.

Development of a Finite Element Human Neck Model for Neck Injury Analysis - Application to Low Speed Rear-End Offset Impacts - (목상해 분석을 위한 상세 유한요소 목모델 개발 - 저속후방 오프셋 충돌에 따른 분석 -)

  • Kim Young Eun;Jo Hui Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.913-920
    • /
    • 2005
  • Compared to previous in-vitro test, FE model showed reliable motion patterns. A finite element model of a 50th percentile male neck was developed to study the mechanics of whiplash injury while the rear impacts. The model was consisted of the whole cervical vertebrae including part of occipital, intervertebral discs. which were modeled using linear viscoelastic materials and posterior elements. The sliding interfaces were defined to simulate contact phenomena in facet joints and in odontoid process. All ligaments and atlanto-occipital membrane were modeled as nonlinear bar elements. Only muscle elements were not considered. Motion of each cervical vertebra was obtained from the dynamic simulation with a MADYMO model for 15 km/h $40\%$ rear end offset impacts. Soft tissue neck injury(STNI) was investigated with a developed FE model. In FE model analysis, the high stress was appeared at C3/C4 disc in offset impact. Further research is still needed in order to improve the developed neck FE model for many different crash patterns.

A Nonlinear Analysis of Two-Dimensional Beam Finite Elements (2차원(次元) 보 유한요소(有限要素) 비선형(非線型) 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.53-61
    • /
    • 1984
  • A nonlinear formulation of a beam finite element(NB6) on the total Lagrangian mode for the geometrically nonlinear analysis of two-dimensional elastic framed structures is presented. The NB6 beam element has been degenerated from the three-dimensional continuum by introducing the deep beam assumptions and consists of three reference nodes and three relative nodes. The element characteristics are derived by discretizing the beam equations of motion using the Galerkin weighted residual method and are reduced-integrated repeatedly for each loading step by the Newton-Raphson iteration techpique. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed nonlinear NB6 beam element.

  • PDF

An Automated Adaptive Finite Element Mesh Generation for Dynamics

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.83-88
    • /
    • 2019
  • Structural analysis remains as an essential part of any integrated civil engineering system in today's rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.

Thermal Impact Evaluation on Buckling of Cylindrical Structures Using Shell Elements (쉘요소를 활용한 원통형 구조물의 좌굴에 대한 열적 영향평가)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • Buckling of cylindrical structures has been extensively researched, because it is an important phenomenon to be considered in structural design. However, the evaluation of thermal effects on the buckling of cylindrical structures has been insufficient; therefore, this study evaluates this thermal effect using shell elements. In addition, the thermal effect on the buckling of temperature-dependent nonlinear materials was evaluated. Nonlinear and linear buckling analyses were performed using the arc-length method to investigate the behavioral characteristics of a cylindrical structure. The basic theory of the linear buckling analysis of a cylindrical structure subjected to thermal stress was derived and presented by applying the thermal stress basic theory.

Nonlinear dynamic FE analysis of structures consisting of rigid and deformable parts -Part I - Formulation

  • Rojek, J.;Kleiber, M.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.313-326
    • /
    • 1994
  • Some structures under the action of some specific loads can be treated as consisting of rigid and deformable parts. The paper presents a way to include rigid elements into a finite element model accounting for geometrical and material nonlinearities. Lagrange multipliers technique is used to derive equations of motion for the coupled deformable-rigid system. Solution algorithm based on the elimination of the Lagrangian multipliers and dependent kinematic unknowns at the element level is described. A follow-up paper(Rojek and Kleiber 1993) complements the discussion by giving details of the computer implementation and presenting some realistic test examples.

Optimum Design on Reduction of Torque Ripple for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 최적설계)

  • Park Seong-June;Lee Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • This paper deals with the optimum design solution on reduction of torque ripple for a Synchronous Reluctance Motor with concentrated winding using response surface methodology. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, open width of slot, slot depth, teeth width variation in concentrated winding SynRM, respectively. This paper presents an optimization procedure using Response Surface Methodology (RSM) to determine design parameters for reducing torque ripple. RSM has been achieved to use the experimental design method in combination with finite Element Method (FEM) and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.