• 제목/요약/키워드: nonlinear finite element analysis program

검색결과 362건 처리시간 0.051초

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe;Falah, Nabil;Lohning, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.241-256
    • /
    • 2010
  • The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.

Nonlinear time history analysis of a pre-stressed concrete containment vessel model under Japan's March 11 earthquake

  • Duan, An;Zhao, Zuo-Zhou;Chen, Ju;Qian, Jia-Ru;Jin, Wei-Liang
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.1-16
    • /
    • 2014
  • To evaluate the behavior of the advanced unbonded pre-stressed concrete containment vessel (UPCCV) for one typical China nuclear power plant under Japan's March 11 earthquake, five nonlinear time history analysis and a nonlinear static analysis of a 1:10 scale UPCCV structure have been carried out with MSC.MARC finite element program. Comparisons between the analytical and experimental results demonstrated that the developed finite element model can predict the earthquake behavior of the UPCCV with fair accuracy. The responses of the 1:10 scale UPCCV subjected to the 11 March 2011 Japan earthquakes recorded at the MYG003 station with the peak ground acceleration (PGA) of 781 gal and at the MYG013 station with the PGA of 982 gal were predicted by the dynamic analysis. Finally, a static analysis was performed to seek the ultimate load carrying capacity for the 1:10 scale UPCCV.

비선형 유한요소 컴퓨터 프로그램 SMAP-S2의 평가 (EVALUATION OF NONLINEAR FINITE ELEMENT COMPUTER PROGRAM SMAP-S2)

  • 김광진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.271-288
    • /
    • 1991
  • SMAP-S2는 구조물/지반 상호작용에서 기하학적 및 매질의 비선형문제를 해결하기 위해 개발된 2차원 정적 유한요소 프로그램이다. 이 프로그램은 지반공학분야에서 다단계 굴착 또는 성토에 적용하기 편리하다. 이 논문에서는 이론적 경과 함께 탄소성 모형의 구성방법을 설명하고 해석결과를 실험성과와 비교하였다. 프로그램의 전처리 및 후처리 기능도 설명하였다.

  • PDF

A variable layering system for nonlinear analysis of reinforced concrete plane frames

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.17-34
    • /
    • 2001
  • An improved method has been developed for the computation of the section forces and stiffness in nonlinear finite element analysis of RC plane frames. The need for a new approach arises because the conventional technique may have a questionable level of efficiency if a large number of layers is specified and a questionable level of accuracy if a smaller number is used. The proposed technique is based on automatically dividing the section into zones of similar state of stress and tangent modulus and then numerically integrating within each zone to evaluate the sectional stiffness parameters and forces. In the new system, the size, number and location of the layers vary with the state of the strains in the cross section. The proposed method shows a significant improvement in time requirement and accuracy in comparison with the conventional layered approach. The computer program based on the new technique has been used successfully to predict the experimental load-deflection response of a RC frame and good agreement with test and other numerical results have been obtained.

복합재료 거동특성의 파괴해석 II - 비선형 유한요소해석 (A Progressive Failure Analysis Procedure for Composite Laminates II - Nonlinear Predictive Finite Element Analysis)

  • 이규세
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.11-17
    • /
    • 2014
  • A progressive failure analysis procedure for composite laminates is completed in here. An anisotropic plastic constitutive model for fiber-reinforced composite material is implemented into computer program for a predictive analysis procedure of composite laminates. Also, in order to describe material behavior beyond the initial yield, the anisotropic work-hardening model and subsequent yield surface are implemented into a computer code, which is Predictive Analysis for Composite Structures (PACS). The accuracy and efficiency of the anisotropic plastic constitutive model and the computer program PACS are verified by solving a number of various fiber-reinforced composite laminates with and without geometric discontinuity. The comparisons of the numerical results to the experimental and other numerical results available in the literature indicate the validity and efficiency of the developed model.

다양한 복합소재를 적용한 지주구조의 유한요소 충돌 해석 (Finite Element Crash Analysis of Support Structures Made of Various Composite Materials)

  • 김규동;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 2015
  • This study performed a finite element crash analysis of support structures made of various composite materials for road facilities. The effects of different material properties of composites for various parameters are studied using the finite element commercial package for this study. In this study, the existing finite element analysis of composite post structures using the LS-DYNA program is further extended to compare dynamic behaviors against car crash of the structures made of various composite materials. The several numerical examples show the comparison of the nonlinear dynamic effects for different materials.

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.

강판으로 보강된 RC보의 부착파괴하중 예측 (Prediction of Bonding Failure Load of RC Beams Strengthened by Externally Bonded Steel Plates)

  • 박윤재;신동혁;이광명;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.729-732
    • /
    • 1999
  • In this paper, the Mohr-Coulomb criterion was adopted to predict the bonding failure load of the reinforced concrete beams strengthened by the externally bonded steel plates. Based on this criterion, a nonlinear analysis program of APSB(Analysis Program for Strengthened Beams) and nonlinear finite element analysis program of RCSD-SB (Reinforced Concrete Structural Design - Strengthened Beams) were developed. Numerical results were then compared with experimental results and good agreements were obtained.

  • PDF

손상지수를 이용한 철근콘크리트 교각의 내진성능평가 (Seismic Performance Assessment of Reinforced Concrete Bridge Piers using Damage Indices)

  • 김태훈;정영수;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.144-147
    • /
    • 2003
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers using damage indices. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage indices aim to provide a means of quantifying numerically the damage reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers is verified by comparison with the reliable experimental results.

  • PDF

자동차용 고무 Dust Cover의 거동에 관한 연구 (An Analysis of Rubber Dust-Cover for Automotive Parts)

  • 강태호;김인관;김영수
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.375-379
    • /
    • 2005
  • Durability of rubber dust cover in the ball joint for automotive suspension parts is analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. The deformation behavior of dust cover is analysed by using the commercial finite element program MARC. In the study, this program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber is modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen. The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber cover.