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1. INTRODUCTION

Composite materials partly behave in a nonlinear

fashion, although composite materials generally have

been modeled as linear elastic material. The

nonlinearity of composite materials can be attributed to

inherent material nonlinearity of individual constituents

and to micromechanical failures such as fiber or matrix

microcracking and interfacial debonding (Yener &

Wolcott, 1988; Drucker, 1969). Furthermore, the

development of advanced composite material (metal

matrix composites) and the complex design of

composite structures make it more complicated to

model material behavior of composites (Shih & Lee,

1978).

Generally, the literature has assumed linear

stress-strain relationships for composite materials.

However, it has also been shown that composite

materials partly behave in a nonlinear fashion (Yener

& Yi, 1989; Petit & Waddoups, 1969; Hahn & Tsai,

1973). The nonlinearity of composite materials can be

attributed to inherent material nonlinearity of the

individual constituents.

As mentioned in other paper, the most constitutive

models are often used in the practical design field for

their simplicity and in spite of their limitations

(Sandhus, 1974). Their unavoidable shortcoming for a

predictive analysis procedure, however, is that they

cannot predict the material behavior of permanent strain

accumulation by large deformation. That is the reason

why the anisotropic plastic constitutive model is

developed in the other paper, which includes the

anisotropic yield criterion, a non-proportional hardening

rule for changing anisotropic parameters. Hence,
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highly anisotropic material such as unidirectional

composite materials, and their model can be analyzed

with account for differential between the tensile and

compressive yield strengths (i.e., Bauschinger effect)

(Hill, 1948, 1950; Valliappan, 1972).

As mentioned earlier, general response prediction of

composite structures becomes possible by developing a

realistic and comprehensive analysis procedure for

general loading conditions. Such an undertaking,

among other considerations, requires very efficient

constitutive model which can predict realistically

nonlinear material behavior. Hence, an anisotropic

plasticity constitutive model for fiber-reinforced

composite laminates is implemented into a computer

program for a predictive analysis procedure of

composites (PACS) (Yener & Yi, 1994).

2. A NONLINEAR PREDICTIVE FINITE

ELEMENT ANALYSIS PROCEDURE

2.1 Characteristics of Predictive Analysis

The proposed predictive nonlinear analysis procedure

is presented in here. In a predictive analysis procedure,

load is applied to a structure incrementally. At each

prescribed step of loading, the desired information

describing the behavior of the structure are computed

and kept to detect the progressive structural behavior.

These behavioral characteristics generally necessitate the

utilization of numerical methods. Clearly, because of

its lengthy incremental nature, a predictive analysis

requires the development of a general purpose computer

program.

2.2 A Nonlinear Analysis Procedure

In Ref. 15, the finite element governing equations

have been formulated, which contain the displacement,

strain-displacement matrices and the constitutive matrix

of the material. For a formulation to be applicable to

general nonlinear problems, however, the constitutive

description must be appropriate. The anisotropic

elastic-plastic constitutive model, which has been

presented in the previous section, is employed. By

including the anisotropic elastic-plastic constitutive

matrix into the governing equation, the current

formulation is applicable to the geometric and material

nonlinear problem. The details of finite element

formulation and numerical implementation of the total

Lagrangian approach is presented in the textbook (Chen

& Han, 1988), so is omitted in here.

The nature of the nonlinear equation requires the use

of an incremental solution procedure. For each load

increment, iterations are generally necessary to satisfy

internal equilibrium. When appropriate, the behavior

may be assumed to be linear for each iteration within

the specified load increment. Successive iterations

within each increment are performed to avoid

divergence of the solution. The process, here referred

to as the modified Newton-Raphson method, is

schematically illustrated in Fig. 1. For each load

increment, unbalanced load is calculated, which then is

used to compute the displacement increment in the

proceeding iteration step. This internal iteration process

is repeated until the equilibrium is approximated to

some acceptable tolerance.

Fig. 1 Incremental-iteration Solution Procedure Shown on
the Load-Deflection Curve [20].

2.3 Incremental Elastic-Plastic Constitutive

Relationship

This section presents numerical calculations of stress

increments. A proper elastic-plastic constitutive

relationship integration algorithm is very important in

maintaining numerical accuracy, stability, and efficiency

for the whole solution procedure (owen & Figueiras,

1983). Several integration techniques for incremental

elastic-plastic constitutive relationships are available in

the literature (Yener & Yi, 1990, 1992; Tsai & Hahn,

1980). This study uses the stress integration scheme,

which is a modified version of the elastic

predictor-radial return method (Schreyer, Kulak &

Kramer, 1979; Ortiz & Popov, 1985). The elastic

predictor-radial return method is first due to Mendelson

(1986). During application of an load increment, an
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element or part of an element can yield. The yield

condition is checked to see whether or not plastic

deformation has occurred at the Gaussian points. As a

result, an element can behave elastically in some parts

and plastically in other parts.

If the material behaves plastically for each

iteration, the stress should be calculated by an

elastic-plastic constitutive relationship. The

incremental constitutive relationship for elastic-plastic

material is written in matrix form, and then the

numerical implementation of the stress computation

is followed.

In matrix form, the stress increment  can

be expressed in terms of the elastic strain increment

, or the total strain increment  as

      (1a)

or

   (1b)

where   and   are the elastic and

elastic-plastic stress-strain relationship matrix,

respectively. The elastic-plastic constitutive relationship

was already given as Eq. 36 in a tensor form,

rewritten here in matrix form as

    


  



  
 

 
 

 


 

(2)

Stress calculation is performed at all Gaussian

integration points.

Now, the first step of the numerical algorithm

is to define a trial stress increment , assuming

an elastic behavior,

    (3)

Accumulate the trial total stress by adding the

assumed elastic stress increment.

In a predictive analysis procedure, the stress

state has to be monitored at every step. At this point,

three possible conditions can be used to calculate the

stress increment. Assuming that the stress state from

the previous step was in elastic state, the initial yield

condition must be checked. If the trial total stress

vector does not violate the initial yield criterion, the

elastic material behavior is presumed. In the second

case, the trial stress increment has passed the initial

yield surface, as shown in Fig. 2. Then, the strain

increment is divided into two parts, such as the pure

elastic response , and the elastic-plastic

response , where  is called a scaling

factor. Hence, the stress increment is also divided into

two parts that can be integrated as


  

  

   (4)

Fig. 2 Schematic Illustration of Entering a Plastic State at

the First Iteration Step in Proceeding from the 

to  Load Increment Step.

If, as in the third case, the stress state at the end of

 load step is already in a plastic state and in a

plastic loading state, the stress increment is obtained by

integrating the stress increment vector, Eq. 4 with

 as


  

  

   (5)

Numerical implementations of integrations appearing

in Eqs. 4 and 5 are detailed in Ref. 31.

If the stress is an unloading state, an elastic

constitutive relation should be used as

 (6)

where the stress increment vector is negative

corresponding to negative strain increment.
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Table 1 Material constants used in clamped plate (Unit: ).

Isotropic material Anisotropic material

Elastic modulus      

Poisson's ratio      

Shear modulus        

Yield strength              

Plastic modulus        

2.4 Computational Procedure for Predictive

Analysis

Based on the preceding discussion, a predictive finite

element analysis procedure, is presented through the

flow chart of Yener and Yi (1994). Also, it is

implemented in the computer program, PACS which

stands for Predictive Analysis of Composite Structures.

As shown in the flow chart of Yener and Yi (1994),

the essential steps required in a predictive solution

algorithm for nonlinear problems are presented to

provide a physical insight into the viability of the

proposed algorithm.

3. NUMERICAL ILLUSTRATIVE EXAMPLES

Anisotropic plasticity and a predictive analysis

procedure have been presented for analysis of

fiber-reinforced composite structures. Also, their

models are successfully implemented into the computer

program PACS (Yener & Yi, 1994). In order to

verify the validity of the problem formulation and the

efficiency of numerical implementation, several example

problems are analyzed by using the computer program

PACS. Numerical results are compared with various

experimental and other numerical results.

3.1 Elastic-Plastic Analysis of Composite

Laminates

In this section, the anisotropic elastic-plastic

analysis capability of the computer program is

verified with several composite laminates on

different boundary and loading conditions. The

elastic-plastic material behavior is observed and

compared. Also, the behaviors of isotropic and

anisotropic materials are compared.

3.2 Clamped Square Plate

A clamped square plate under uniformly distributed

loading is considered. Only a quarter of the plate has

been discretized because of symmetry considerations

(Fig. 3). Eight-noded isoparametric elements with

four-point (2x2) Gaussian integration in the plane are

used, and eight equal thickness layers are taken

through thickness direction. The plate has been solved

with both isotropic and anisotropic materials; material

properties are given in Table 1.

Fig. 3 The Geometry of Clamped Plate and Finite
Element Discretization.

The thickness and span of plate is h = 0.2 m and L =

6.0 m, respectively.

In Fig. 4, vertical displacements at the plate's center

are plotted for different load levels for both isotropic

and anisotropic materials. The clear difference between

isotropic and anisotropic material is observed. Fig. 4

also includes comparison with other numerical results,

and agreement with present results is rather close.
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Fig. 4 Load-Displacement Curves at the Center of
Clamped Plate for Isotropic and Anisotropic
Material.

3.3 Simple Supported Square Plate

This section analyzes the simple supported plate

on four sides of the plate with geometry of plate

and finite element discretization given in Fig. 5.

The purpose of this problem is to see effects of

different boundary conditions on the plastic behavior

of the plate. In order to compare with the clamped

plate, the same geometry as the clamped plate is

used with a uniformly loaded case. The comparison

is performed only on isotropic material. The

development of plastic regions for both clamped and

simple supported plates are presented in Fig. 6.

Fig. 5 (a) The geometry of simple supported plate and

(b) finite element discretization.

Yielding starts at the corners in the simple supported

plate, while starting in the middle of the sides of the

clamped plate. Next, the center of both plates yields.

Then the plastic regions propagate from the vicinity of

the corners and the plate centers. The pattern of the

plastic region growth agrees with that of Dodds (1987).

Fig. 6 Development of plastic region for (a) clamped and
(b) simple supported plate with uniform load.

3.4 Clamped Quadratic Square Shell

An elastic-plastic analysis of a clamped spherical

shell under self-weight condition is undertaken. The

geometry of the spherical shell is given in Fig. 7.

The coordinates of z-direction are obtained as




 


  (7)

where L is the width of shell and c is equal to L/10.

Material characteristics are the same as employed in

Table 1 of the plate problem. Finite element

discretization is same as that of the plate problem in

Fig. 5, where nine-nodes Heterosis element is used.

Fig. 7 The Geometry of Clamped Quadratic Shell.
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Displacements at center of shell for both isotropic and

anisotropic materials are plotted in Fig. 8, which show

numerical results from Owen and Figueiras (1983) and

good agreements.

Fig. 8 The Curve for Displaceement at Center Versus

Self-Weight of Spherical Shell

The spherical shell is again solved under a

concentrated load at center. Vertical displacement at

center is plotted against the applied load in Fig. 9.

Fig. 9 The Load Versus Vertical Displaceement at Center

of Shell.

4. CONCLUSIONS

The development and use of an analytical procedure

which has capability of predicting the progressive

material behavior of structures, named as a predictive

analysis procedure in here, is developed for more

accurate assessment of structural safety and efficiency

of composite structures.

A quadratic anisotropic yield criterion in stress space

is developed for general use with unidirectional and

bidirectional composite lamina. The developed

anisotropic work-hardening model allows for a

nonproportional change of the yield values so that the

subsequent yield surface can be a distorted shape. The

predictive finite element analysis procedure is developed

for accurate and efficient analysis in predicting

progressive behavior of composite structures. As a

result, a computer code, PACS (Predictive Analysis of

Composite Structures) is developed, which adopts the

abovementioned anisotropic plasticity model.

The accuracy and efficiency of the computer code

PACS are verified with various benchmark problems.

Numerical predictions of the computer program PACS

compare very well with available experimental,

analytical and other numerical results. Comparisons

illustrate the capability of the constitutive model and

the computer program PACS. The developed

constitutive and predictive analysis model predicts

progressive nonlinear behavior from the beginning of

loading, in plane and through thickness direction of

composite laminates. The capability of PACS to

predict nonlinear material behavior of composites can

be used as a helpful device in parametric studies for

design of fiber-reinforced laminates.
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