• 제목/요약/키워드: nonlinear finite element analysis program

검색결과 362건 처리시간 0.022초

지반-구조물 상호작용의 비선형 시간영역해석을 위한 실용적 복합기법 (A Practical Hybird Approach for Nonlinear Time-Domain Analysis of Soil-Structure Interaction)

  • 김재민
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.132-139
    • /
    • 2000
  • This paper presents a new hybrid approach for nonlinear dynamic analysis of the soil-structure interaction system in the time domain. It employs, in a practical manner, a linear SSI program and a general-purpose nonlinear finite element program. In order to demonstrate the validity and applicability of the proposed method, seismic response analyses are carried out for a free-field problem and a 2-D subway station. The results indicate that the proposed methodology gives reasonable solution for the linear/nonlinear SSI problem utilizing a general-purpose finite element program. Some further studies will endorse the applicability of the method to various soil-structure interaction problems.

  • PDF

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

Numerical investigation of RC structural walls subjected to cyclic loading

  • Cotsovos, D.M.;Pavlovic, M.N.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.215-238
    • /
    • 2005
  • This work is based on a nonlinear finite-element model with proven capacity for yielding realistic predictions of the response of reinforced-concrete structures under static monotonically-increasing loading. In it, the material description relies essentially on the two key properties of triaxiality and brittleness and, thus, is simpler than those of most other material models in use. In this article, the finite-element program is successfully used in investigating the behaviour of a series of RC walls under static cyclic loading. This type of loading offers a more strenuous test of the validity of the proposed program since cracks continuously form and close during each load cycle. Such a test is considered to be essential before attempting to use the program for the analysis of concrete structures under seismic excitation in order to ensure that the solution procedure adopted is numerically stable and can accurately predict the behaviour of RC structures under such earthquake-loading conditions. This is achieved through a comparative study between the numerical predictions obtained presently from the program and available experimental data.

압력포텐샬을 이용한 초탄성 유한요소 정식화 (Hyperelastic Finite Element Formulation using Pressure Potential)

  • 김헌영;김호;김중재
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2492-2502
    • /
    • 2002
  • A rubber-like material model is generally characterized by hyperelasticity and formulated by a total stress-total strain relationship because the material shows nonlinear elastic behaviour under large deformation. In this study, a pressure potential obtained by a separately interpolated pressure is introduced to the non-linear finite element formulation incorporating with incompressible or almost incompressible condition of the material. The present formulation is somewhat different from the general formulation using the pressure computed in the displacement field. A non-linear finite element analysis program is developed for the plane strain and the axisymmetric contact problems of a rubber-like material. Various examples with rubber material are analyzed for its verification. The results about deformed shapes and stress distributions thought to be meaningful in comparison with a commercial program, MARC.

전단변형이 고려되는 1차원 봉요소를 사용한 철근콘크리트 보의 비선형 유한요소해석 (Nonlinear Finite Element analysis of Reinforced Concrete Beam using 1-D element with Shear Deformation)

  • 전영배;유영화;이준희;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.481-486
    • /
    • 1997
  • In the paper, a simplified method for nonlinear analysis of reinforced concrete structures is presented, which is based on timeoshenko beam theory and constitutive equations that are given by the relation of average stress and average strain for concrete and reinforcing bars. Especially, this method consider shear deformation and determine the failure mode. In this paper, 1-D beam element model and program considering shear deformation are suggested. In addition, program procedure is presented briefly and the results are plotted with test examples.

  • PDF

복합재 적층판재의 비선형 수치해석 및 실험 (Nonlinear Numerical Analysis and Experiment of Composite Laminated Plates)

  • 조원만;이영신;윤성기
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2915-2925
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated plates. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The results of the geometric nonlinear analyses showed good agreements with the other exact and numerical solutions. The results of the combined nonlinear analyses considered both geometric and material nonlinear behaviors were compared to the experiments in which a concentrated force was applied to the center of the square laminated plate with clamped four edges.

Nonlinear analysis of RC structure with massive infill wall exposed to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.811-828
    • /
    • 2016
  • This study aims to present nonlinear time history analysis results of double leaf cavity wall (DLCW) reinforced concrete structure exposed to shake table tests. Simulation of the model was done by a Finite Element (FE) program. Shake table experiment was performed at the National Civil Engineering Laboratory in Lisbon, Portugal. The results of the experiment were compared with numeric DLCW model and numeric model of reinforced concrete structure with unreinforced masonry wall (URM). Both DLCW and URM models have two bays and two stories. Dimensions of the tested structure and finite element models are 1:1.5 scaled according to Cauchy Froude similitude law. The URM model has no experimental results but the purpose is to compare their performance level with the DLCW model. Results of the analysis were compared with experimental response and were evaluated according to ASCE/SEI 41-06 code.

엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정 (Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen)

  • 허은주;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.

Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis

  • Albegmprli, Hasan M.;Cevik, Abdulkadir;Gulsan, M. Eren;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.259-277
    • /
    • 2015
  • The lack of experimental studies on the mechanical behavior of reinforced concrete (RC) haunched beams leads to difficulties in statistical and reliability analyses. This study performs stochastic and reliability analyses of the ultimate shear capacity of RC haunched beams based on nonlinear finite element analysis. The main aim of this study is to investigate the influence of uncertainty in material properties and geometry parameters on the mechanical performance and shear capacity of RC haunched beams. Firstly, 65 experimentally tested RC haunched beams and prismatic beams are analyzed via deterministic nonlinear finite element method by a special program (ATENA) to verify the efficiency of utilized numerical models, the shear capacity and the crack pattern. The accuracy of nonlinear finite element analyses is verified by comparing the results of nonlinear finite element and experiments and both results are found to be in a good agreement. Afterwards, stochastic analyses are performed for each beam where the RC material properties and geometry parameters are assigned to take probabilistic values using an advanced simulating procedure. As a result of stochastic analysis, statistical parameters are determined. The statistical parameters are obtained for resistance bias factor and the coefficient of variation which were found to be equal to 1.053 and 0.137 respectively. Finally, reliability analyses are accomplished using the limit state functions of ACI-318 and ASCE-7 depending on the calculated statistical parameters. The results show that the RC haunched beams have higher sensitivity and riskiness than the RC prismatic beams.

FEM에 의한 자동차부품용 고무커버에 관한 해석 (FEM Analysis of Rubber Cover for Automotive Parts)

  • 김상우;김인관;강태호;김영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF