• Title/Summary/Keyword: nonlinear dynamic system

Search Result 1,476, Processing Time 0.032 seconds

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

A Dynamic Anti-windup Scheme for Input-constrained Feedback Linearizable Nonlinear Systems (궤환선형화 가능한 비선형 시스템의 입력제한을 고려한 동적 와인드엎 방지)

  • 윤성식;박종구;윤태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.534-534
    • /
    • 2000
  • This paper proposes a dynamic compensation scheme for input-constrained feedback linearizable nonlinear systems to cope with the windup phenomenon. Given a feedback linearizing controller for such a nonlinear system designed without considering its input constraint, an additional dynamic compensator is proposed to account for the constraint. This dynamic anti-windup is based on the minimization of a reasonable performance index, and some stability properties of the resulting closed-loop are presented.

  • PDF

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion (비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

A Study of the Analysis of Characteristics of Nonlinear Dynamic System on Blood-Flow of Peripheral Blood-Vessel between Diabetic Patients and Control Subjects (당뇨병환자와 정상인의 말초혈관혈류의 비선형적 운동계 분석에 대한 연구)

  • Kim, D.H.;Choi, J.Y.;Yi, S.H.;Go, H.W.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.363-367
    • /
    • 1996
  • In general, the physiological systems have shown nonlinear complex phenomena. This study analyzes nonlinear characteristics of the flow of peripheral blood vessel dynamics in physiological systems using chaos theory. We performed this study by means of several quantity methods and power spectrum. The quantity methods are a phase space reconstruction and a poincare's map. And the power spectrum method is a conventional linear analysis. Experimental data have been acquired from examining 10 diabetic patients, and 10 control subjects in initial stable state. In acquisition experminetal data, we anlysized the differences of nonlinear characteristics between diabetic group and control group. The results of quality analysis methods showed the flow of peripheral blood vessel had the nonlinear and chaotic characteristics, screening a strange attractor on reconstructed phase space. In conclusion, the flow dynamics of peripheral blood vessel had a chaotic behavior of nonlinear dynamic systems, dynamic system, and differences of characteristic of nonlinear dynamic system.

  • PDF

Adaptive Neural Dynamic Surface Control via H Approach for Nonlinear Flight Systems (비선형 비행 시스템을 위한 H 접근법 기반 적응 신경망 동적 표면 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.254-262
    • /
    • 2008
  • In this paper, we propose an adaptive neural dynamic surface control (DSC) approach with $H_{\infty}$ tracking performance for full dynamics of nonlinear flight systems. It is assumed that the model uncertainties such as structured and unstrutured uncertainties, and external disturbances influence the nonlinear aircraft model. In our control system, self recurrent wavelet neural networks (SRWNNs) are used to compensate the model uncertainties of nonlinear flight systems, and an adaptive DSC technique is extended for the disturbance attenuation of nonlinear flight systems. All weights of SRWNNs are trained on-line by the smooth projection algorithm. From Lyapunov stability theorem, it is shown that $H_{\infty}$ performance nom external disturbances can be obtained. Finally, we present the simulation results for a nonlinear six-degree-of-freedom F-16 aircraft model to confirm the effectiveness of the proposed control system.

Dynamic Analysis of Mooring Dolphin System Considering Soil Properties (지반의 강성특성을 고려한 지반-돌핀구조계의 동적해석)

  • Yi, Jin-Hak;Oh, Se-Boong;Yun, Chung-Bang;Hong, Sup;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.19-30
    • /
    • 1998
  • In this paper, the dynamic analysis of a dolphin system for mooring a floating structure such as barge mounted plant is studied. The characteristics of the soil-pile system are simplified by a set of equivalent spring elements at the mudline. To evaluate the equivalent spring constants, the finite difference method is used. Since the characteristics of the soil-pile system are nonlinear in case of soft foundation, the nonlinear dynamic analysis technique is needed. The Newmark $beta$ method incorporating the modified Newton-Raphson method(initial stiffness method) is used. A numerical analysis is performed on two mooring dolphin systems on soft foundation and rock foundation. In case of the rock foundation, the characteristics are found to be nearly linear, so the linear dynamic analysis may be sufficient to consider the foundation effect. But in case of soft foundation, the non-linearity of the foundation appears to be very signigicant, so the nonlinear dynamic analysis si needed.

  • PDF

Nonlinear Excitation Control Design of Generator Based on Multi-objective Feedback

  • Chen, Dengyi;Li, Xiaocong;Liu, Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2187-2195
    • /
    • 2018
  • In order to realize the multi-objective control of single-input multi-output nonlinear differential algebraic system (NDAS) and to improve the dynamic characteristics and static accuracy, a design method of nonlinear control with multi-objective feedback (NCMOF) is proposed, the principium of this method to arrange system poles, as well as its nature to coordinate dynamic characteristics and static accuracy of the system are analyzed in detail. Through NCMOF design method, the multi-objective control of the system is transformed into linear space, and then it is effectively controlled under the nonlinear feedback control law, the problem to balance all control objectives caused by less input and more output of the system thus is solved. Applying NCMOF design method to generator excitation system, the nonlinear excitation control law with terminal voltage, active power and rotor speed as objective outputs is designed. Simulation results show that NCMOF can not only improve the dynamic characteristics of generator, but also damp the mechanical oscillation of a generator in transient process. Moreover, NCMOF can control the terminal voltage of the generator to the setting value with no static error under typical disturbances.

The nonlinear dynamic control of BLDC motors : an adaptive learning control approach (적응 학습 제어 기법을 이용한 BLDC 모터의 비선형 동력학 제어)

  • 박정동;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.333-336
    • /
    • 1997
  • In this paper, we present a nonlinear dynamic controller for position tracking of brushless dc motors. In constructing the controller, a backstepping-type approach is used under the condition of full state information, while an adaptive controller is adopted for parameter uncertainty throughout the entire electromechanical system. The nonlinear dynamic controller using the adaptive learning technique approach is shown to drive the state variables of system to the desired ones asymptotically and whose effectiveness is also sown via computer simulation.

  • PDF

A Study on the Stability of Supervisory Control for Nonlinear System with Saturating Input (포화입력을 가진 비선형 시스템에 대한 슈퍼바이저 제어의 안정성 연구)

  • 차경래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.112-122
    • /
    • 1999
  • In realistic control systems the nonlinear saturation attributes of the control actuator due to physical limitations should be taken into account This nonlinear saturation of actuators may cause not only deterioration of the control performance but also a large overshoot during start-up and shut-down. As the overshoot increases the system may become oscillatory unstable. in this paper the supervisor implementation which guarantees good performance for saturation operation and prevents reset wind up is presented, Moreover the sufficient conditions of the stability for saturated system using supervisory control with a dynamic controller are provided in the continuous-time and in the discrete-time domain Numerical example is illustrated to depict the efficiency of supervisory control for a typical satuaurated production-distribution system controlled by a discrete-time dynamic controller and to validate basic results by simulation.

  • PDF