• Title/Summary/Keyword: nonlinear dynamic system

Search Result 1,476, Processing Time 0.031 seconds

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

Evaluation of the Dynamic P-Y Curves of Soil-Pile System in Liquefiable Ground (액상화 가능성이 있는 지반에 놓인 지반-말뚝 시스템의 동적 p-y 곡선 연구)

  • Han, Jin-Tae;Kim, Sung-Ryul;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.141-147
    • /
    • 2007
  • Various approaches have been developed for the dynamic response analysis of piles. In one of the approaches, the soil-pile interaction is approximated by using parallel nonlinear springs, namely the p-y curves. Currently available p-y curve recommendations are based on static and cyclic lateral load tests. Other researchers have attempted to extend the p-y curves by incorporating the effects of liquefaction on soil-pile interaction and derived scaling factors of p-y curves to account fur the liquefaction. However, opinions on the scaling factors vary. In this study, the sealing factors, which reflect the variation of the elastic moduli of surrounding soils, were established combining the relationship between excess pore pressures and the natural frequencies of a soil-pile system obtained from Ig shaking table tests and the relationship between the elastic moduli of surrounding soils and the natural frequencies of a soil-pile system obtained from numerical analyses. As a result, the scaling factors were presented in an exponential function.

Design of Robust $H_\infty$ Control for Interconnected Systems: A Homotopy Method

  • Chen Ning;Ikeda Masao;Gui Weihua
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • This paper considers a robust decentralized $H_\infty$ control problem for uncertain large-scale interconnected systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in subsystems. A design method based on the bounded real lemma is developed for a dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea of homotopy, where some of the variables are fixed alternately on each iteration to reduce the NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is computed first by imposing structural constraints on the coefficient matrices gradually. Then, the decentralized controller is modified again gradually to cope with the uncertainties. A given example shows the efficiency of this method.

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Investigation on mechanics performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.533-542
    • /
    • 2007
  • The cable-stayed-suspension hybrid bridge is a cooperative system of the cable-stayed bridge and suspension bridge, and takes some advantages and also makes up some deficiencies of both the two bridge systems, and therefore becomes strong in spanning. By taking the cable-stayed-suspension hybrid bridge, suspension bridge and cable-stayed bridge with main span of 1400 m as examples, the mechanics performance including the static and dynamic characteristics, the aerostatic and aerodynamic stability etc is investigated by 3D nonlinear analysis. The results show that as compared to the suspension bridge and cable-stayed bridge, the cable-stayed-suspension hybrid bridge has greater structural stiffness, less internal forces and better wind stability, and is favorable to be used in super long-span bridges.

Impact of the masonry infills on the correlation between seismic intensity measures and damage of R/C buildings

  • Kostinakis, Konstantinos G.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-71
    • /
    • 2018
  • This paper investigates the role of the masonry infills on the correlation between widely used earthquake Intensity Measures (IMs) and the damage state of 3D R/C buildings taking into account the orientation of the seismic input. For the purposes of the investigation an extensive parametric study is conducted using 60 R/C buildings with different heights, structural systems and masonry infills' distributions. The results reveal that the correlation between the IMs and the seismic damage can be strongly affected by the masonry infills' distribution, depending on the special characteristics of the structural system, the number of stories and the incident angle.

Passivity-based Control Approach of Exciter and Governor Systems for Synchronous Electric Generators (Passivity 기반 동기 발전기의 여자기 및 조속기 시스템의 제어 기법)

  • Cho, Hyun Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.561-568
    • /
    • 2018
  • Passivity theory is significantly applied to analyze stability of nonlinear dynamic systems and construct its stable control systems. This paper presents a passivity based control design approach for exciters and governors which are employed to regulate the terminal voltage and the rotor velocity of synchronous generator systems in industry fields. We consider the IEEE type 1 exciter and the gas turbine (GT) governor models respectively in this paper. We first carry out a passivity analysis for exciter and governor control systems, which are numerically obtained from its mathematical models. And then its control parameters are selected to assure passivity conditions in a design procedure. Lastly, we investigate numerical simulations to demonstrate reliability of the proposed control approach against large-scale generators with parameter changes.

Torque ripple control of High Current SRM using Fuzzy Controller (퍼지제어기를 이용한 대전류 SRM의 토크리플제어)

  • OH, Dong-Jun;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.373-375
    • /
    • 2004
  • The SRM is more robust and lower cost than other type motors. The inverter for SRM cannot have shoot through fault, since a phase winding of SRM is independent of other phase windings. The SRM has high starting torque and high power density. But it has torque ripples due to nonlinear magnetic characteristics. Therefore, SRM has highly non-linear torque producing characteristics. Because fuzzy logic is a flexible and general-purposed method for implementing non-linear dynamic functions, it is effective for the control of high current SRM. We design the fuzzy controller and demonstrate the fuzzy control system by MATLAB.

  • PDF

Sensorless Vector Control of Induction Motors Using a New Reduced-Order Extended Luenberger Observer (새로운 축소 차원 확장 루엔버거 관측기를 이용한 유도 전동기의 센서리스 벡터제어)

  • Lee, Kyo-Beum;Song, Joo-Ho;Song, Joong-Ho;Choy, Ick
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.173-179
    • /
    • 2004
  • A synthesis method of the reduced-order extended Luenberger observer (ROELO) and its design procedure for a nonlinear dynamic system are presented. This paper proposes a method to reduce the order of the observer and to ! elect the observer gain matrix. The proposed algorithm is applied for high performance induction motor drives without a speed sensor The simulation and experiment results show that the proposed ROELO provides both rotor flux and rotor speed estimation with good performance.

CVCF Control of Stand-Alone Wind Power System (독립형 풍력발전 시스템의 CVCF 제어)

  • Kim H.K.;Abo-Khalil Ahmed;Lee D.C.;Seok J.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.379-382
    • /
    • 2003
  • In this paper, a novel nonlinear control method of the CVCF(constant voltage and constant frequency output voltage for the three-phase PWM inverter is proposed, which gives high dynamic responses at load variation as well as zero steady-state error. The experimental results are shown th verify the validity of the proposed scheme.

  • PDF