• Title/Summary/Keyword: nonlinear dynamic analyses

Search Result 408, Processing Time 0.027 seconds

Nonlinear Time-Domain Analysis of Underground Subway Structure Subjected to Seismic Loadings (지진하중에 대한 지하철구조물의 비선형 시간영역해석)

  • 김재민;이중건
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.163-170
    • /
    • 2001
  • This paper presents results of nonlinear analyses for underground structures including both the soil-structure interaction and nonlinear behavior of concrete material. For this purpose, a hybrid method is employed, in which a dynamic analysis technique for a linear soil-structure interaction system and a general purpose FE program are combined in hybrid and practical manners. A couple of nonlinear analyses are carried out for framed structures in multi-layered half space soil medium. The yielding of concrete structure is considered by a multi-linear stress- strain relationship. The numerical results suggest that ductile design fur the intermediate columns in the underground framed structure is substantially important in aseismic design.

  • PDF

Nonlinear Structural Analysis of High-Aspect-Ratio Structures using Large Deflection Beam Theory

  • Kim, Kyung-Seok;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • The nonlinear structural analyses of high-aspect-ratio structures were performed. For the high-aspect-ratio structures, it is important to understand geometric nonlinearity due to large deflections. To consider geometric nonlinearity, finite element analyses based on the large deflection beam theory were introduced. Comparing experimental data and the present nonlinear analysis results, the current results were proved to be very accurate for the static and dynamic behaviors for both isotropic and anisotropic beams.

Static and dynamic responses of Halgavor Footbridge using steel and FRP materials

  • Gunaydin, M.;Adanur, S.;Altunisik, A.C.;Sevim, B.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.51-69
    • /
    • 2015
  • In recent years, the use of fiber reinforced polymer composites has increased because of their unique features. They have been used widely in the aircraft and space industries, medical and sporting goods and automotive industries. Thanks to their beneficial and various advantages over traditional materials such as high strength, high rigidity, low weight, corrosion resistance, low maintenance cost, aesthetic appearance and easy demountable or moveable construction. In this paper, it is aimed to determine and compare the geometrically nonlinear static and dynamic analysis results of footbridges using steel and glass fiber reinforced polymer composite (GFRP) materials. For this purpose, Halgavor suspension footbridge is selected as numerical examples. The analyses are performed using three identical footbridges, first constructed from steel, second built only with GFRP material and third made of steel- GFRP material, under static and dynamic loadings using finite element method. In the finite element modeling and analyses, SAP2000 program is used. Geometric nonlinearities are taken into consideration in the analysis using P-Delta criterion. The numerical results have indicated that the responses of the three bridges are different and that the response values obtained for the GFRP composite bridge are quite less compared to the steel bridge. It is understood that GFRP material is more useful than the steel for the footbridges.

Dynamic analysis on belt-drive system of machine tools (공작 기계 벨트 구동계의 동적 해석)

  • Kim, S.G.;Lee, S.Y.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.104-111
    • /
    • 1995
  • The needs of ultraprecision machine tools, which manufacture and machine the high precision parts used in computers, semiconductors and othe rprecise machines, have been increased recentrly. So it is important to design the driving parts of the ultraprecision machine tools which affect significantly on the performance of them. In this paper, the dynamic analyses on the belt-drive system were studied. The correlational equations between the acoustic natural frequency and the tension of belt were derived by experiments. The dynamic delections while the dynamic loads on the motor system changed were analyzed by the finite element analysis. The nonlinear characteristics of the bearings on the dynamic performance was studied and the belt connecting the motor to the spindle of a machine tool was modeled by the truss element and the beam element.

  • PDF

Evaluation of performance of eccentric braced frame with friction damper

  • Vaseghi Amiri, J.;Navayinia, B.;Navaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.717-732
    • /
    • 2011
  • Nonlinear dynamic analysis and evaluation of eccentric braced steel frames (EBF) equipped with friction damper (FD) is studied in this research. Previous studies about assessment of seismic performance of steel braced frame with FD have been generally limited to installing this device in confluence of cross in concentrically braced frame such chevron and x-bracing. Investigation is carried out with three types of steel frames namely 5, 10 and 15 storeys, representing the short, medium and high structures respectively in series of nonlinear dynamic analysis and 10 slip force values subjected to three different earthquake records. The proper place of FD, rather than providing them at all level is also studied in 15 storey frame. Four dimensionless indices namely roof displacement, base shear, dissipated energy and relative performance index (RPI) are determined in about 100 nonlinear dynamic analyses. Then average values of maximum roof displacement, base shear, energy dissipated and storey drift under three records for both EBF and EBF equipped with friction damper are obtained. The result indicates that FD reduces the response compared to EBF and is more efficient than EBF for taller storey frames.

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF